The Jiweishan landslide illustrates the failure pattern of an apparent dip slide of an oblique thick-bedded rockslide. Centrifugal modeling was performed using a model slope consisting of four sets of joints to invest...The Jiweishan landslide illustrates the failure pattern of an apparent dip slide of an oblique thick-bedded rockslide. Centrifugal modeling was performed using a model slope consisting of four sets of joints to investigate the landslide initiation mechanism. Crack strain gauges pasted between the slide blocks and the base failed in sequence from the rear to the front as the centrifugal acceleration increased. When the acceleration reached 16.3g, the instantaneous failure of the key block in the front triggered the apparent dip slide of all blocks. The physical modeling results and previous studies suggest that the strength reduction in the weak layer and the failure of the key block are the main reasons for the Jiweishan landslide. The centrifuge experiment validated the previously proposed driving-blocks-key-block model of apparent dip slide in oblique with inclined bedding rock slopes. In addition, the results from limit equilibrium method and centrifuge test suggest that even though the failure of the key block in the front is instantaneous, a progressive stable-unstable transition exists.展开更多
基金supported and sponsored by a project of the Mechanism of Slope deformation induced by Underground Mining in Chongqing(DZLXJK201307)of the Institute of Geomechanicsprojects on Research on Monitoring and Early Warning,Risk Assessment Technology for geological hazards(2012BAK10B00)of the National Key Technology R&D Program for the 12th Five-year Plan
文摘The Jiweishan landslide illustrates the failure pattern of an apparent dip slide of an oblique thick-bedded rockslide. Centrifugal modeling was performed using a model slope consisting of four sets of joints to investigate the landslide initiation mechanism. Crack strain gauges pasted between the slide blocks and the base failed in sequence from the rear to the front as the centrifugal acceleration increased. When the acceleration reached 16.3g, the instantaneous failure of the key block in the front triggered the apparent dip slide of all blocks. The physical modeling results and previous studies suggest that the strength reduction in the weak layer and the failure of the key block are the main reasons for the Jiweishan landslide. The centrifuge experiment validated the previously proposed driving-blocks-key-block model of apparent dip slide in oblique with inclined bedding rock slopes. In addition, the results from limit equilibrium method and centrifuge test suggest that even though the failure of the key block in the front is instantaneous, a progressive stable-unstable transition exists.