In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuz...In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.展开更多
Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink...Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.展开更多
The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,rob...The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.展开更多
Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis...Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.展开更多
Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors...Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.展开更多
The emergence of the clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)genome-editing system has brought about a significant revolution in the realm of managing human d...The emergence of the clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)genome-editing system has brought about a significant revolution in the realm of managing human diseases,establishing animal models,and so on.To fully harness the potential of this potent gene-editing tool,ensuring efficient and secure delivery to the target site is paramount.Consequently,developing effective delivery methods for the CRISPR/Cas9 system has become a critical area of research.In this review,we present a comprehensive outline of delivery strategies and discuss their biomedical applications in the CRISPR/Cas9 system.We also provide an indepth analysis of physical,viral vector,and non-viral vector delivery strategies,including plasmid-,mRNA-and protein-based approach.In addition,we illustrate the biomedical applications of the CRISPR/Cas9 system.This review highlights the key factors affecting the delivery process and the current challenges facing the CRISPR/Cas9 system,while also delineating future directions and prospects that could inspire innovative delivery strategies.This review aims to provide new insights and ideas for advancing CRISPR/Cas9-based delivery strategies and to facilitate breakthroughs in biomedical research and therapeutic applications.展开更多
Ferroelectrics are a type of material with a polar structure and their polarization direction can be inverted reversibly by applying an electric field.They have attracted tremendous attention for their extensive appli...Ferroelectrics are a type of material with a polar structure and their polarization direction can be inverted reversibly by applying an electric field.They have attracted tremendous attention for their extensive applications in non-volatile memory,sensors and neuromorphic computing.However,conventional ferroelectric materials face insulating and interfacial issues in the commercialization process.In contrast,two-dimensional(2D)ferroelectric materials usually have excellent semiconductor performance,clean van der Waals interfaces and robust ferroelectric order in atom-thick layers,and hold greater promise for constructing multifunctional ferroelectric optoelectronic devices and nondestructive ultra-high-density memory.Recently,2D ferroelectrics have obtained impressive breakthroughs,showing overwhelming superiority.Herein,firstly,the progress of experimental research on 2D ferroelectric materials is reviewed.Then,the preparation of 2D ferroelectric devices and their applications are discussed.Finally,the future development trend of 2D ferroelectrics is looked at.展开更多
The simulation of a control system for the longitudinal axis of the rotary or fixed-wing unmanned aerial vehicles(UAVs)is demonstrated in this study.The control unit includes design considerations of two controllers t...The simulation of a control system for the longitudinal axis of the rotary or fixed-wing unmanned aerial vehicles(UAVs)is demonstrated in this study.The control unit includes design considerations of two controllers to provide robust stability,tracking of the proposed linear dynamics,an adequate set of proportional-integral-derivative(PID)controller gains,and a minimal cost function.The PID control and linear quadratic regulator(LQR)with or without full-state-observer were evaluated.An optimal control system is assumed to provide fast rise and settling time,minimize overshoot,and eliminate the steady-state error.The effectiveness of this approach was verified by a linear model of the UAV aircraft in the semi-dynamic simulation platform of Matlab/Simulink,in which the open-loop system was assessed in terms of flight robustness and reference tracking.The experimental results show that the proposed controllers effectively improve the configuration of the control system of the plant,maintain the sustainability of the dynamic flight model stability,and diminish the flight controller errors.The LQR provides robust stability,but it is not optimal in the transient phase of particular plant output.The PID control system can adjust the controller’s gains for optimal hovering(or stable slow flight)and is especially useful for the tracking system.Finally,comparing aircraft stability using PID and LQR controllers shows that the latter has less overshoot and a shorter settling time;in addition,all proposed controllers can be practically deployed as one UAV’s system,which can be handled as an exemplary model of the UAV flight management system.展开更多
This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the ...This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the heating of a single nanoparticle or an ensemble thereof,and the dissipation of the energy of nanoparticles due to heat exchange with the environment.The goal is to consider the dependences and values of the temperatures of the nanoparticles and the environment,their time scales,and other parameters that describe these processes.Experimental results and analytical studies on the heating of single metal nanoparticles by laser pulses are discussed,including the laser thresholds for initiating subsequent photothermal processes,how temperature influences the optical properties,and the heating of gold nanoparticles by laser pulses.Experimental studies of the heating of an ensemble of nanoparticles and the results of an analytical study of the heating of an ensemble of nanoparticles and the environment by laser radiation are considered.Nanothermometry methods for nanoparticles under laser heating are considered,including changes in the refractive indices of metals and spectral thermometry of optical scattering of nanoparticles,Raman spectroscopy,the thermal distortion of the refractive index of an environment heated by a nanoparticle,and thermochemical phase transitions in lipid bilayers surrounding a heated nanoparticle.Understanding the sequence of events after radiation absorption and their time scales underlies many applications of nanoparticles.The applicationfields for the laser heating of nanoparticles are reviewed,including thermochemical reactions and selective nanophotothermolysis initiated in the environment by laser-heated nanoparticles,thermal radiation emission by nanoparticles and laser-induced incandescence,electron and ion emission of heated nanoparticles,and optothermal chemical catalysis.Applications of the laser heating of nanoparticles in laser nanomedicine are of particular interest.Significant emphasis is given to the proposed analytical approaches to modeling and calculating the heating processes under the action of a laser pulse on metal nanoparticles,taking into account the temperature dependences of the parameters.The proposed models can be used to estimate the parameters of lasers and nanoparticles in the various applicationfields for the laser heating of nanoparticles.展开更多
MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical str...MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation.展开更多
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav...Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.展开更多
The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables...The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.展开更多
Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. ...Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.展开更多
Redundancy elimination techniques are extensively investigated to reduce storage overheads for cloud-assisted health systems.Deduplication eliminates the redundancy of duplicate blocks by storing one physical instance...Redundancy elimination techniques are extensively investigated to reduce storage overheads for cloud-assisted health systems.Deduplication eliminates the redundancy of duplicate blocks by storing one physical instance referenced by multiple duplicates.Delta compression is usually regarded as a complementary technique to deduplication to further remove the redundancy of similar blocks,but our observations indicate that this is disobedient when data have sparse duplicate blocks.In addition,there are many overlapped deltas in the resemblance detection process of post-deduplication delta compression,which hinders the efficiency of delta compression and the index phase of resemblance detection inquires abundant non-similar blocks,resulting in inefficient system throughput.Therefore,a multi-feature-based redundancy elimination scheme,called MFRE,is proposed to solve these problems.The similarity feature and temporal locality feature are excavated to assist redundancy elimination where the similarity feature well expresses the duplicate attribute.Then,similarity-based dynamic post-deduplication delta compression and temporal locality-based dynamic delta compression discover more similar base blocks to minimise overlapped deltas and improve compression ratios.Moreover,the clustering method based on block-relationship and the feature index strategy based on bloom filters reduce IO overheads and improve system throughput.Experiments demonstrate that the proposed method,compared to the state-of-the-art method,improves the compression ratio and system throughput by 9.68%and 50%,respectively.展开更多
Sulfated polysaccharides extracted from seaweeds,including Carrageenan,Fucoidan and Ulvan,are crucial bioactive compounds known for their diverse beneficial properties,such as anti-inflammatory,antitumor,immunomodulat...Sulfated polysaccharides extracted from seaweeds,including Carrageenan,Fucoidan and Ulvan,are crucial bioactive compounds known for their diverse beneficial properties,such as anti-inflammatory,antitumor,immunomodulatory,antiviral,and anticoagulant effects.These polysaccharides form hydrogels hold immense promise in biomedicine,particularly in tissue engineering,drug delivery systems and wound healing.This review comprehensively explores the sources and structural characteristics of the three important sulfated polysaccharides extracted from different algae species.It elucidates the gelation mechanisms of these polysaccharides into hydrogels.Furthermore,the biomedical applications of these three sulfated polysaccharide hydrogels in wound healing,drug delivery,and tissue engineering are discussed,highlighting their potential in the biomedicine.展开更多
Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focus...Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focused on the production and pharmacological side effects caused by H_(2)S.Therefore,effective strategies to remove H_(2)S has become a key research topic.Furthermore,the development of novel nanoplatforms has provided new tools for the targeted removal of H_(2)S.This paper was performed to review the association between H_(2)S anddisease,relatedH_(2)S inhibitory drugs,aswell as H_(2)S responsive nanoplatforms(HRNs).This review first analyzed the role of H_(2)S in multiple tissues and conditions.Second,common drugs used to eliminate H_(2)S,as well as their potential for combination with anticancer agents,were summarized.Not only the existing studies on HRNs,but also the inhibition H_(2)S combined with different therapeutic methods were both sorted out in this review.Furthermore,this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail.Finally,potential challenges of HRNs were proposed.This study demonstrates the excellent potential of HRNs for biomedical applications.展开更多
Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networ...Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networks,beyond the theoretical capacity limit.Despite the extensive research on SC,there is a lack of comprehensive survey on technologies,solutions,applications,and challenges for SC.In this article,the development of SC is first reviewed and its characteristics,architecture,and advantages are summarized.Next,key technologies such as semantic extraction,semantic encoding,and semantic segmentation are discussed and their corresponding solutions in terms of efficiency,robustness,adaptability,and reliability are summarized.Applications of SC to UAV communication,remote image sensing and fusion,intelligent transportation,and healthcare are also presented and their strategies are summarized.Finally,some challenges and future research directions are presented to provide guidance for further research of SC.展开更多
The proliferation of IoT devices requires innovative approaches to gaining insights while preserving privacy and resources amid unprecedented data generation.However,FL development for IoT is still in its infancy and ...The proliferation of IoT devices requires innovative approaches to gaining insights while preserving privacy and resources amid unprecedented data generation.However,FL development for IoT is still in its infancy and needs to be explored in various areas to understand the key challenges for deployment in real-world scenarios.The paper systematically reviewed the available literature using the PRISMA guiding principle.The study aims to provide a detailed overview of the increasing use of FL in IoT networks,including the architecture and challenges.A systematic review approach is used to collect,categorize and analyze FL-IoT-based articles.Asearch was performed in the IEEE,Elsevier,Arxiv,ACM,and WOS databases and 92 articles were finally examined.Inclusion measures were published in English and with the keywords“FL”and“IoT”.The methodology begins with an overview of recent advances in FL and the IoT,followed by a discussion of how these two technologies can be integrated.To be more specific,we examine and evaluate the capabilities of FL by talking about communication protocols,frameworks and architecture.We then present a comprehensive analysis of the use of FL in a number of key IoT applications,including smart healthcare,smart transportation,smart cities,smart industry,smart finance,and smart agriculture.The key findings from this analysis of FL IoT services and applications are also presented.Finally,we performed a comparative analysis with FL IID(independent and identical data)and non-ID,traditional centralized deep learning(DL)approaches.We concluded that FL has better performance,especially in terms of privacy protection and resource utilization.FL is excellent for preserving privacy becausemodel training takes place on individual devices or edge nodes,eliminating the need for centralized data aggregation,which poses significant privacy risks.To facilitate development in this rapidly evolving field,the insights presented are intended to help practitioners and researchers navigate the complex terrain of FL and IoT.展开更多
A new one-parameter Chris-Jerry distribution,created by mixing exponential and gamma distributions,is discussed in this article in the presence of incomplete lifetime data.We examine a novel generalized progressively ...A new one-parameter Chris-Jerry distribution,created by mixing exponential and gamma distributions,is discussed in this article in the presence of incomplete lifetime data.We examine a novel generalized progressively hybrid censoring technique that ensures the experiment ends at a predefined period when the model of the test participants has a Chris-Jerry(CJ)distribution.When the indicated censored data is present,Bayes and likelihood estimations are used to explore the CJ parameter and reliability indices,including the hazard rate and reliability functions.We acquire the estimated asymptotic and credible confidence intervals of each unknown quantity.Additionally,via the squared-error loss,the Bayes’estimators are obtained using gamma prior.The Bayes estimators cannot be expressed theoretically since the likelihood density is created in a complex manner;nonetheless,Markov-chain Monte Carlo techniques can be used to evaluate them.The effectiveness of the investigated estimations is assessed,and some recommendations are given using Monte Carlo results.Ultimately,an analysis of two engineering applications,such as mechanical equipment and ball bearing data sets,shows the applicability of the proposed approaches that may be used in real-world settings.展开更多
This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural la...This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural launch in 2002,China has achieved substantial advancements in ocean satellite technology,forming an observation system composed of the HY-1,HY-2,and HY-3 series satellites.These satellites are integral to global ocean environmental monitoring due to their high resolution,extensive coverage,and frequent observations.Looking forward,China aims to further enhance and expand its ocean satellite capabilities through ongoing projects to support global environmental protection and sustainable development.展开更多
基金CONAHCYTTecnológico Nacional de Mexico/Tijuana Institute of Technology for the support during this research
文摘In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.
文摘Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.
基金supported by the National Natural Science Foundation of China[grant number 81970987].
文摘The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.
基金supported by the National Natural Science Foundation of China(22278030,22090032,22090030,22288102,22242019)the Fundamental Research Funds for the Central Universities(buctrc202119,2312018RC07)+1 种基金Major Program of Qingyuan Innovation Laboratory(Grant No.001220005)the Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology。
文摘Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.
基金The authors would like to acknowledge the support from the Natural Sciences and Engineering Research Council of Canada in the form of Discovery Grants to ARR and SS(RGPIN-2019-07246 and RGPIN-2022-04988).A.Rosenkranz greatly acknowledges the financial support given by ANID-Chile within the project Fondecyt Regular 1220331 and Fondequip EQM190057.B.Wang gratefully acknowledges the financial support given by the Alexander von Humboldt Foundation.
文摘Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.
基金supported by the National Natural Science Foundation of China[32271464]the Hunan Provincial Natural Science Foundation for Distinguished Young Scholars[2022JJ10086]+4 种基金the Innovation-Driven Project of Central South University[2020CX048]the Joint Fund of the Hunan Provincial Natural Science Foundation and the Hunan Medical Products Adminstration[2023JJ60501]the Natural Science Foundation of Changsha[kq2202131]the Postgraduate Innovation Project of Central South University[2021zzts0977,2022ZZTS0980]the Hunan Provincial Innovation Foundation for Postgraduate[CX20210340,CX20220372].
文摘The emergence of the clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)genome-editing system has brought about a significant revolution in the realm of managing human diseases,establishing animal models,and so on.To fully harness the potential of this potent gene-editing tool,ensuring efficient and secure delivery to the target site is paramount.Consequently,developing effective delivery methods for the CRISPR/Cas9 system has become a critical area of research.In this review,we present a comprehensive outline of delivery strategies and discuss their biomedical applications in the CRISPR/Cas9 system.We also provide an indepth analysis of physical,viral vector,and non-viral vector delivery strategies,including plasmid-,mRNA-and protein-based approach.In addition,we illustrate the biomedical applications of the CRISPR/Cas9 system.This review highlights the key factors affecting the delivery process and the current challenges facing the CRISPR/Cas9 system,while also delineating future directions and prospects that could inspire innovative delivery strategies.This review aims to provide new insights and ideas for advancing CRISPR/Cas9-based delivery strategies and to facilitate breakthroughs in biomedical research and therapeutic applications.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFB3505301)the National Natural Science Foundation of China (Grant Nos.12241403 and12174237)the Graduate Education Innovation Project in Shanxi Province (Grant No.2021Y484)。
文摘Ferroelectrics are a type of material with a polar structure and their polarization direction can be inverted reversibly by applying an electric field.They have attracted tremendous attention for their extensive applications in non-volatile memory,sensors and neuromorphic computing.However,conventional ferroelectric materials face insulating and interfacial issues in the commercialization process.In contrast,two-dimensional(2D)ferroelectric materials usually have excellent semiconductor performance,clean van der Waals interfaces and robust ferroelectric order in atom-thick layers,and hold greater promise for constructing multifunctional ferroelectric optoelectronic devices and nondestructive ultra-high-density memory.Recently,2D ferroelectrics have obtained impressive breakthroughs,showing overwhelming superiority.Herein,firstly,the progress of experimental research on 2D ferroelectric materials is reviewed.Then,the preparation of 2D ferroelectric devices and their applications are discussed.Finally,the future development trend of 2D ferroelectrics is looked at.
文摘The simulation of a control system for the longitudinal axis of the rotary or fixed-wing unmanned aerial vehicles(UAVs)is demonstrated in this study.The control unit includes design considerations of two controllers to provide robust stability,tracking of the proposed linear dynamics,an adequate set of proportional-integral-derivative(PID)controller gains,and a minimal cost function.The PID control and linear quadratic regulator(LQR)with or without full-state-observer were evaluated.An optimal control system is assumed to provide fast rise and settling time,minimize overshoot,and eliminate the steady-state error.The effectiveness of this approach was verified by a linear model of the UAV aircraft in the semi-dynamic simulation platform of Matlab/Simulink,in which the open-loop system was assessed in terms of flight robustness and reference tracking.The experimental results show that the proposed controllers effectively improve the configuration of the control system of the plant,maintain the sustainability of the dynamic flight model stability,and diminish the flight controller errors.The LQR provides robust stability,but it is not optimal in the transient phase of particular plant output.The PID control system can adjust the controller’s gains for optimal hovering(or stable slow flight)and is especially useful for the tracking system.Finally,comparing aircraft stability using PID and LQR controllers shows that the latter has less overshoot and a shorter settling time;in addition,all proposed controllers can be practically deployed as one UAV’s system,which can be handled as an exemplary model of the UAV flight management system.
文摘This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the heating of a single nanoparticle or an ensemble thereof,and the dissipation of the energy of nanoparticles due to heat exchange with the environment.The goal is to consider the dependences and values of the temperatures of the nanoparticles and the environment,their time scales,and other parameters that describe these processes.Experimental results and analytical studies on the heating of single metal nanoparticles by laser pulses are discussed,including the laser thresholds for initiating subsequent photothermal processes,how temperature influences the optical properties,and the heating of gold nanoparticles by laser pulses.Experimental studies of the heating of an ensemble of nanoparticles and the results of an analytical study of the heating of an ensemble of nanoparticles and the environment by laser radiation are considered.Nanothermometry methods for nanoparticles under laser heating are considered,including changes in the refractive indices of metals and spectral thermometry of optical scattering of nanoparticles,Raman spectroscopy,the thermal distortion of the refractive index of an environment heated by a nanoparticle,and thermochemical phase transitions in lipid bilayers surrounding a heated nanoparticle.Understanding the sequence of events after radiation absorption and their time scales underlies many applications of nanoparticles.The applicationfields for the laser heating of nanoparticles are reviewed,including thermochemical reactions and selective nanophotothermolysis initiated in the environment by laser-heated nanoparticles,thermal radiation emission by nanoparticles and laser-induced incandescence,electron and ion emission of heated nanoparticles,and optothermal chemical catalysis.Applications of the laser heating of nanoparticles in laser nanomedicine are of particular interest.Significant emphasis is given to the proposed analytical approaches to modeling and calculating the heating processes under the action of a laser pulse on metal nanoparticles,taking into account the temperature dependences of the parameters.The proposed models can be used to estimate the parameters of lasers and nanoparticles in the various applicationfields for the laser heating of nanoparticles.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2020R1A6A1A03043435 and 2020R1A2C1099862)supported by the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korean Government(MOTIE)(P0012451,The Competency Development Program for Industry Specialist)。
文摘MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation.
基金This work was supported by National Key R&D Program of China(2021YFF1200200)Peiyang Talents Project of Tianjin University.
文摘Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.
基金the National Natural Science Foundation of China for Excellent Young Scholar(Grant No.52322313)National Key R&D Project from Minister of Science and Technology(2021YFA1201601)+6 种基金National Science Fund of China(62174014)Beijing Nova program(Z201100006820063)Youth Innovation Promotion Association CAS(2021165)Innovation Project of Ocean Science and Technology(22-3-3-hygg-18-hy)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(KFZD202202)Fundamental Research Funds for the Central Universities(292022000337)Young Top-Notch Talents Program of Beijing Excellent Talents Funding(2017000021223ZK03).
文摘The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.
基金sponsored by the Regional Joint Fund of the National Science Foundation of China via Grant No. U21A20492the National Natural Science Foundation of China (NSFC) via Grant No. 62275041+2 种基金the Sichuan Science and Technology Program via Grant Nos. 2022YFH0081, 2022YFG0012 and 2022YFG0013the Sichuan Youth Software Innovation Project Funding via Grant No. MZGC20230068the Sichuan Province Key Laboratory of Display Science and Technology。
文摘Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.
基金National Key R&D Program of China,Grant/Award Number:2018AAA0102100National Natural Science Foundation of China,Grant/Award Numbers:62177047,U22A2034+6 种基金International Science and Technology Innovation Joint Base of Machine Vision and Medical Image Processing in Hunan Province,Grant/Award Number:2021CB1013Key Research and Development Program of Hunan Province,Grant/Award Number:2022SK2054111 Project,Grant/Award Number:B18059Natural Science Foundation of Hunan Province,Grant/Award Number:2022JJ30762Fundamental Research Funds for the Central Universities of Central South University,Grant/Award Number:2020zzts143Scientific and Technological Innovation Leading Plan of High‐tech Industry of Hunan Province,Grant/Award Number:2020GK2021Central South University Research Program of Advanced Interdisciplinary Studies,Grant/Award Number:2023QYJC020。
文摘Redundancy elimination techniques are extensively investigated to reduce storage overheads for cloud-assisted health systems.Deduplication eliminates the redundancy of duplicate blocks by storing one physical instance referenced by multiple duplicates.Delta compression is usually regarded as a complementary technique to deduplication to further remove the redundancy of similar blocks,but our observations indicate that this is disobedient when data have sparse duplicate blocks.In addition,there are many overlapped deltas in the resemblance detection process of post-deduplication delta compression,which hinders the efficiency of delta compression and the index phase of resemblance detection inquires abundant non-similar blocks,resulting in inefficient system throughput.Therefore,a multi-feature-based redundancy elimination scheme,called MFRE,is proposed to solve these problems.The similarity feature and temporal locality feature are excavated to assist redundancy elimination where the similarity feature well expresses the duplicate attribute.Then,similarity-based dynamic post-deduplication delta compression and temporal locality-based dynamic delta compression discover more similar base blocks to minimise overlapped deltas and improve compression ratios.Moreover,the clustering method based on block-relationship and the feature index strategy based on bloom filters reduce IO overheads and improve system throughput.Experiments demonstrate that the proposed method,compared to the state-of-the-art method,improves the compression ratio and system throughput by 9.68%and 50%,respectively.
基金funded by the Shandong Provincial Key Research and Development Program(No.2019GSF107031).
文摘Sulfated polysaccharides extracted from seaweeds,including Carrageenan,Fucoidan and Ulvan,are crucial bioactive compounds known for their diverse beneficial properties,such as anti-inflammatory,antitumor,immunomodulatory,antiviral,and anticoagulant effects.These polysaccharides form hydrogels hold immense promise in biomedicine,particularly in tissue engineering,drug delivery systems and wound healing.This review comprehensively explores the sources and structural characteristics of the three important sulfated polysaccharides extracted from different algae species.It elucidates the gelation mechanisms of these polysaccharides into hydrogels.Furthermore,the biomedical applications of these three sulfated polysaccharide hydrogels in wound healing,drug delivery,and tissue engineering are discussed,highlighting their potential in the biomedicine.
基金supported by National Key Research and Development Program of China(contract No.2019YFA0904800)National Nature Science Foundation of China(32030065,31722033,92049304 to Y.Z.)+5 种基金Shanghai Sailing Program(contract No.21YF1410300)Science and Technology Commission of Shanghai Municipality(contract No.10DZ2220500)The Shanghai Committee of Science and Technology(grant No.11DZ2260600)Shanghai Frontiers Science Center of Optogenetic Techniques for CellMetabolism(Y.Z.)Research Unit of New Techniques for Live-cell Metabolic Imaging(Chinese Academy of Medical Sciences,2019-I2M-5-013 to Y.Z.)the State Key Laboratory of Bioreactor Engineering,the Fundamental Research Funds for the Central Universities.
文摘Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focused on the production and pharmacological side effects caused by H_(2)S.Therefore,effective strategies to remove H_(2)S has become a key research topic.Furthermore,the development of novel nanoplatforms has provided new tools for the targeted removal of H_(2)S.This paper was performed to review the association between H_(2)S anddisease,relatedH_(2)S inhibitory drugs,aswell as H_(2)S responsive nanoplatforms(HRNs).This review first analyzed the role of H_(2)S in multiple tissues and conditions.Second,common drugs used to eliminate H_(2)S,as well as their potential for combination with anticancer agents,were summarized.Not only the existing studies on HRNs,but also the inhibition H_(2)S combined with different therapeutic methods were both sorted out in this review.Furthermore,this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail.Finally,potential challenges of HRNs were proposed.This study demonstrates the excellent potential of HRNs for biomedical applications.
基金supported by the Natural Science Foundation of China under Grants 61971084,62025105,62001073,62272075the National Natural Science Foundation of Chongqing under Grants cstc2021ycjh-bgzxm0039,cstc2021jcyj-msxmX0031+1 种基金the Science and Technology Research Program for Chongqing Municipal Education Commission KJZD-M202200601the Support Program for Overseas Students to Return to China for Entrepreneurship and Innovation under Grants cx2021003,cx2021053.
文摘Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networks,beyond the theoretical capacity limit.Despite the extensive research on SC,there is a lack of comprehensive survey on technologies,solutions,applications,and challenges for SC.In this article,the development of SC is first reviewed and its characteristics,architecture,and advantages are summarized.Next,key technologies such as semantic extraction,semantic encoding,and semantic segmentation are discussed and their corresponding solutions in terms of efficiency,robustness,adaptability,and reliability are summarized.Applications of SC to UAV communication,remote image sensing and fusion,intelligent transportation,and healthcare are also presented and their strategies are summarized.Finally,some challenges and future research directions are presented to provide guidance for further research of SC.
文摘The proliferation of IoT devices requires innovative approaches to gaining insights while preserving privacy and resources amid unprecedented data generation.However,FL development for IoT is still in its infancy and needs to be explored in various areas to understand the key challenges for deployment in real-world scenarios.The paper systematically reviewed the available literature using the PRISMA guiding principle.The study aims to provide a detailed overview of the increasing use of FL in IoT networks,including the architecture and challenges.A systematic review approach is used to collect,categorize and analyze FL-IoT-based articles.Asearch was performed in the IEEE,Elsevier,Arxiv,ACM,and WOS databases and 92 articles were finally examined.Inclusion measures were published in English and with the keywords“FL”and“IoT”.The methodology begins with an overview of recent advances in FL and the IoT,followed by a discussion of how these two technologies can be integrated.To be more specific,we examine and evaluate the capabilities of FL by talking about communication protocols,frameworks and architecture.We then present a comprehensive analysis of the use of FL in a number of key IoT applications,including smart healthcare,smart transportation,smart cities,smart industry,smart finance,and smart agriculture.The key findings from this analysis of FL IoT services and applications are also presented.Finally,we performed a comparative analysis with FL IID(independent and identical data)and non-ID,traditional centralized deep learning(DL)approaches.We concluded that FL has better performance,especially in terms of privacy protection and resource utilization.FL is excellent for preserving privacy becausemodel training takes place on individual devices or edge nodes,eliminating the need for centralized data aggregation,which poses significant privacy risks.To facilitate development in this rapidly evolving field,the insights presented are intended to help practitioners and researchers navigate the complex terrain of FL and IoT.
基金This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R50)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘A new one-parameter Chris-Jerry distribution,created by mixing exponential and gamma distributions,is discussed in this article in the presence of incomplete lifetime data.We examine a novel generalized progressively hybrid censoring technique that ensures the experiment ends at a predefined period when the model of the test participants has a Chris-Jerry(CJ)distribution.When the indicated censored data is present,Bayes and likelihood estimations are used to explore the CJ parameter and reliability indices,including the hazard rate and reliability functions.We acquire the estimated asymptotic and credible confidence intervals of each unknown quantity.Additionally,via the squared-error loss,the Bayes’estimators are obtained using gamma prior.The Bayes estimators cannot be expressed theoretically since the likelihood density is created in a complex manner;nonetheless,Markov-chain Monte Carlo techniques can be used to evaluate them.The effectiveness of the investigated estimations is assessed,and some recommendations are given using Monte Carlo results.Ultimately,an analysis of two engineering applications,such as mechanical equipment and ball bearing data sets,shows the applicability of the proposed approaches that may be used in real-world settings.
基金Supported by Remote Sensing Support for Offshore Ocean Environment and Polar Sea Ice Early Warning Services(102121201550000009004)。
文摘This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural launch in 2002,China has achieved substantial advancements in ocean satellite technology,forming an observation system composed of the HY-1,HY-2,and HY-3 series satellites.These satellites are integral to global ocean environmental monitoring due to their high resolution,extensive coverage,and frequent observations.Looking forward,China aims to further enhance and expand its ocean satellite capabilities through ongoing projects to support global environmental protection and sustainable development.