A new method based on human-likeness assessment and optimization concept to solve the problem of human-like ma- nipulation planning for articulated robot is proposed in this paper. This method intrinsically formulates...A new method based on human-likeness assessment and optimization concept to solve the problem of human-like ma- nipulation planning for articulated robot is proposed in this paper. This method intrinsically formulates the problem as a con- strained optimization problem in robot configuration space. The robot configuration space is divided into different subregions by human likeness assessment. A widely used strategy, Rapid Upper Limb Assessment (RULA) in applied ergonomics, is adopted here to evaluate the human likeness of robot configuration. A task compatibility measurement of the robot velocity transmission ratio along a specified direction is used as the target function for the optimization problem. Simple illustrative examples of this method applied to a two Degree of Freedom (DOF) planar robot that resembles the upper limb of a human are presented. Further applications to a humanoid industrial robot SDA10D are also presented. The reasonable planning results for these applications assert the effectiveness of our method.展开更多
基金The National Natural Science Foundation of China,National High Technology Research and Development Program of China,The Research Innovation Program for College Graduates of Jiangsu Province,The Excellent Doctoral Dissertation Foundation of Southeast University
文摘A new method based on human-likeness assessment and optimization concept to solve the problem of human-like ma- nipulation planning for articulated robot is proposed in this paper. This method intrinsically formulates the problem as a con- strained optimization problem in robot configuration space. The robot configuration space is divided into different subregions by human likeness assessment. A widely used strategy, Rapid Upper Limb Assessment (RULA) in applied ergonomics, is adopted here to evaluate the human likeness of robot configuration. A task compatibility measurement of the robot velocity transmission ratio along a specified direction is used as the target function for the optimization problem. Simple illustrative examples of this method applied to a two Degree of Freedom (DOF) planar robot that resembles the upper limb of a human are presented. Further applications to a humanoid industrial robot SDA10D are also presented. The reasonable planning results for these applications assert the effectiveness of our method.