期刊文献+
共找到794篇文章
< 1 2 40 >
每页显示 20 50 100
ELECTRO-HYDRAULIC COMPOUND CONTROL METHOD AND CHARACTERISTIC OF CONTROL FOR TENSION SYSTEM WITH HIGH INERTIA LOADS 被引量:2
1
作者 ZHONG Tianyu WANG Qingfeng +1 位作者 LI Yanmin GONG Fangyou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期391-395,共5页
Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which... Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which can obtain optimal dynamic damping ratio through real-time altering pressure-flow gain of the throttle control unit, improve the dynamic characteristic of tension follow-up control for the tension system with high inertia loads. Moreover, the characteristic when the cable linear velocity variation causes change of tension is investigated, and a compound control strategy is proposed. The theoretical analysis and experimental results show that the electro-hydraulic compound control circuit is effective and the characteristic of the compound control strategy is satisfactory. 展开更多
关键词 High inertia loads tension control system Compound control strategy
下载PDF
Evaluation of Contact Pressure in Bending under Tension Test by a Pressure Sensitive Film
2
作者 Luis Fernando Folle Lirio Schaeffer 《Journal of Surface Engineered Materials and Advanced Technology》 2016年第4期201-214,共15页
The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this... The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this pressure with the friction and wear generated. Since there are many studies that determine the coefficient of friction in sheet metal forming by bending under tension (BUT) test, the contact pressure between the pin and the sheet was measured using a film that has the ability to record the applied pressure. The vertical force applied to pin was also measured. The results indicate that the vertical force is more accurate to set the contact pressure that using equations predetermined. It was also observed that the contact area between the sheet and the pin is always smaller than the area calculated geometrically. The friction coefficient was determined for the BUT test through several equations proposed by various authors in order to check if there is much variation between the results. It was observed that the friction coefficient showed little variation for each equation, and each one can be used. The material used was the commercially pure aluminum, alloy Al1100. 展开更多
关键词 Coefficient of Friction Sheet Metal Forming Process Bending under tension Test Contact Pressure Technology Applied to Design
下载PDF
Loads and Dynamic Response Characteristic on FPSO Under Internal Solitary Waves
3
作者 ZHANG Rui-rui LI Cui +2 位作者 PU Chun-rong LIU Qian YOU Yun-xiang 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期785-796,共12页
According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response mo... According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio. 展开更多
关键词 internal solitary wave(ISW) dynamic response FPSO dynamic loads tension increment
下载PDF
Dynamic strength of rock with single planar joint under various loading rates at various angles of loads applied 被引量:6
4
作者 Pei-Yun Shu Hung-Hui Li +1 位作者 Tai-Tien Wang Tzuu-Hsing Ueng 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第3期545-554,共10页
Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar(SHPB) testing. A buffer pad between the striker bar and the inciden... Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar(SHPB) testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2-4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of the specimens to be investigated. The effects of the loading rate and angle of load applied on the dynamic peak stresses/strengths of the specimens are examined. Relevant experimental results demonstrate that the failure pattern of each specimen can be classified as four types: Type A, integrated with or without tiny flake-off; Type B, slide failure; Type C, fracture failure; and Type D, crushing failure. The dynamic peak stresses/strengths of the specimens that have similar failure patterns increase linearly with the loading rate, yielding high correlations that are evident on semi-logarithmic plots. The slope of the failure envelope is the smallest for slide failure, followed by crushing failure, and that of fracture failure is the largest. The magnitude of the plot slope of the dynamic peak stress against the loading rate for the specimens that are still integrated after testing is between that of slide failure and crushing failure. The angle of application has a limited effect on the dynamic peak stresses/strengths of the specimens regardless of the failure pattern, but it affects the bounds of the loading rates that yield each failure pattern, and thus influences the dynamic responses of the single jointed specimen. Slide failure occurs at the lowest loading rate of any failure, but can only occur in single jointed specimen that allows sliding.Crushing failure is typically associated with the largest loading rate, and fracture failure may occur when the loading rate is between the boundaries for slide failure and crushing failure. 展开更多
关键词 Dynamic strength Failure pattern Rock with single planar Loading rate Angle of load applied
下载PDF
Quantification of dynamic tensile parameters of rocks using a modified Kolsky tension bar apparatus 被引量:7
5
作者 S. Huang Rong Chen K. W. Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第2期162-168,共7页
For brittle materials, the tensile strength plays an important role in mechanical analyses and engineering applications. Although quasi-static direct and dynamic indirect tensile strength testing methods have already ... For brittle materials, the tensile strength plays an important role in mechanical analyses and engineering applications. Although quasi-static direct and dynamic indirect tensile strength testing methods have already been developed for rocks, the dynamic direct pull test is still necessary to accurately determine the tensile strength of rocks. In this paper, a Kolsky tension bar system is developed for measuring the dynamic direct tensile strength of rocks. A dumbbell-shaped sample is adopted and attached to the bars using epoxy glue. The pulse shaping technique is utilized to eliminate the inertial effect of samples during test. The single pulse loading technique is developed for the effective microstructure analyses of tested samples. Two absorption devices are successfully utilized to reduce the reflection of waves in the incident bar and transmitted bar, respectively. Laurentian granite (LG) is tested to demonstrate the feasibility of the proposed method. The tensile strength of LG increases with the loading rate. Furthermore, the nominal surface energy of LG is measured, which also increases with the loading rate. 展开更多
关键词 Kolsky tension bar system dynamic tensile strength single pulse loading
下载PDF
Snap Tension in Mooring Lines of Deepwater Platform 被引量:2
6
作者 张素侠 唐友刚 刘海笑 《China Ocean Engineering》 SCIE EI 2009年第3期415-428,共14页
Based on the theory of impact dynamics, the motion equations for a mooring line-floating body system before and after impact loading are established with consideration of the viscoelastic property of mooring lines. Th... Based on the theory of impact dynamics, the motion equations for a mooring line-floating body system before and after impact loading are established with consideration of the viscoelastic property of mooring lines. The factors that influence the taut-slack conditions of a mooring system are analyzed through classifying the taut-slack regions, which are defined by non-dimensional ratios of displacement, frequency, and damping of the system. The mooring system of Jip spar platform is analyzed, and the snap tension characteristics of mooring lines are given. The factors that influence the maximum tension in mooring lines, including the mass of the floating body, length of mooring lines, frequency and amplitude of external excitation, and pretension in mooting lines, are also analyzed through computing the dynamic response of system and parametric study. It is shown that the maximum tension increases with the increasing mass of the floating body, external excitation and pretension. Also, it is found that the influence of the non-dimensional ratio of damping increases with the increase of the pretension in mooring lines. 展开更多
关键词 platform of deepwater mooring line taut-slack snap loading snap tension
下载PDF
Application of split Hopkinson tension bar technique to the study of dynamic fracture properties of materials 被引量:1
7
作者 Ze-Jian Xu Yu-Long Li Feng-Lei Huang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期424-431,共8页
A novel approach is proposed in determining dy- namic fracture toughness (DFT) of high strength steel, using the split Hopkinson tension bar (SHTB) apparatus, com- bined with a hybrid experimental-numerical method... A novel approach is proposed in determining dy- namic fracture toughness (DFT) of high strength steel, using the split Hopkinson tension bar (SHTB) apparatus, com- bined with a hybrid experimental-numerical method. The center-cracked tension specimen is connected between the bars with a specially designed fixture device. The fracture initiation time is measured by the strain gage method, and dynamic stress intensity factors (DSIF) are obtained with the aid of 3D finite element analysis (FEA). In this approach, the dimensions of the specimen are not restricted by the connec- tion strength or the stress-state equilibrium conditions, and hence plane strain state can be attained conveniently at the crack tip. Through comparison between the obtained results and those in open publication, it is concluded that the ex- perimental data are valid, and the method proposed here is reliable. The validity of the obtained DFT is checked with the ASTM criteria, and fracture surfaces are examined at the end of paper. 展开更多
关键词 Split Hopkinson tension bar Dynamic fracture toughness Hybrid experimental-numerical method High loading rate Failure mode
下载PDF
Web Tension Regulation of Multispan Roll-to-Roll System using Integrated Active Dancer and Load Cells for Printed Electronics Applications 被引量:1
8
作者 ZUBAIR Muhammad PONNIAH Ganeshthangaraj +1 位作者 YANG Young Jin CHOI Kyung Hyun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期229-239,共11页
The mass production of primed electronics can be achieved by roll-to-roll(R2R) printing system, so highly accurate web tension is required that can minimize the register error and keep the thickness and roughness of... The mass production of primed electronics can be achieved by roll-to-roll(R2R) printing system, so highly accurate web tension is required that can minimize the register error and keep the thickness and roughness of printed devices in limits. The web tension of a R2R system is regulated by the use of integrated load cells and active dancer system for printed electronics applications using decentralized multi-input-single-output(MISO) regularized variable learning rate backpropagation artificial neural networks. The active dancer system is used before printing system to reduce disturbances in the web tension of process span. The classical PID control result in tension spikes with the change in roll diameter of winder and unwinder rolls. The presence of dancer in R2R system shows that improved web tension control in printing span and the web tension can be enhanced from 3.75 N to 4.75 N. The overshoot of system is less than ±2.5 N and steady state error is within ± 1 N where load cells have a signal noise of ±0.7 N. The integration of load cells and active dancer with self-adapting neural network control provide a solution to the web tension control of multispan roll-to-roll system. 展开更多
关键词 roll-to-roll(R2R)system multispan printed electronics active dancer load cell artificial neural networks tension control multi-input-single-output(MISO
下载PDF
Effects of Loading Rate on Flexural-tension Properties and Uniaxial Compressive Strength of Micro-surfacing Mixture 被引量:1
9
作者 陈筝 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第4期656-658,共3页
The major objective of this research was to discuss the effects of loading rate on the flexural-tension properties and uniaxial compressive strength of micro-surfacing mixture using three-point bending test and uniaxi... The major objective of this research was to discuss the effects of loading rate on the flexural-tension properties and uniaxial compressive strength of micro-surfacing mixture using three-point bending test and uniaxial compressive test respectively. As a preventive maintenance surface treatment on asphalt pavement, micro-surfacing was formed on the basis of the ISSA recommendation of an optimum micro-surfacing design. Tests were conducted over a wide range of temperature to investigate the difference of properties from low loading rate to a relatively high loading rate. Three-point bending test was used to study the flexural strength, strain and modulus of micro-surfacing mixture, and uniaxial compressive test was carried out to obtain the relationship between strength and the loading rate as well as temperature. The experimental results showed that flexural strength at high loading rate was larger than that at low loading rate. The flexural strength difference between low and high loading rate enlarged when the temperature rose. The flexural strain at high loading rate increased compared with results of the low loading rate. Results of the flexural modulus revealed that micro-surfacing mixture exhibited better anti-cracking characteristic at low temperature when given a relatively low loading rate. Results of uniaxial compressive test revealed that the strength difference of micro-surfacing among different loading rates increased with the increase of temperature. The logarithm relationship between the strength and loading rate over a wide range of temperature was obtained to compare the experimental and predicted values, which resulting in a reasonable consistency. 展开更多
关键词 loading rate flexural-tension properties uniaxial compressive strength MICRO-SURFACING
下载PDF
Fatigue Properties of Plain Concrete under Triaxial Constant-Amplitude Tension-Compression Cyclic Loading 被引量:1
10
作者 宋玉普 曹伟 孟宪宏 《Journal of Shanghai University(English Edition)》 CAS 2005年第2期127-133,共7页
Fatigue tests were conducted on tapered plain concrete prism specimens under tri axial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2f c and the upper st... Fatigue tests were conducted on tapered plain concrete prism specimens under tri axial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2f c and the upper stress ranged from 0. 20f t to 0.65f t. Three constant lateral pressures were 0.1f c, 0.2f c and 0.3f c respec tively. Based on the results, the th ree-stage evolution rule of the fatigue stiffness, maximum(minimum) longitudina l strain and damage were analyzed, and a unified S-N curve to calculate fati gue strength factors was worked out. The results show that the fatigue strength and fa tigue life under triaxial constant-amplitude tension-compression cyclic loadin g are smaller than those under uniaxial fatigue condition. Moreover, the secondary strain creep rate is related to the fatigue life, a formula for describing thei r relation was derived. The investigation of this paper can provide information for the fatigue design of concrete structures. 展开更多
关键词 CONCRETE triaxial constant-amplitude tension-compression cyclic loading fati gue strength fatigue life.
下载PDF
Governing equations and numerical solutions of tension leg platform with finite amplitude motion
11
作者 曾晓辉 沈晓鹏 吴应湘 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第1期37-49,共13页
It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP,... It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP, The tensions of the tethers are also nonlinear functions of the displacement of TLP. Then the displacement, the velocity and the acceleration of TLP should be taken into account when loads are calculated. In addition, equations of motions should be set up on the instantaneous position. A theo- retical model for analyzing the nonlinear behavior of a TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e., finite displace- ment, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force, Based on the theoretical model, the comprehensive nonlinear differential equations are deduced. Then the nonlinear dynamic analysis of ISSC TLP in regular waves is performed in the time domain. The degenerative linear solution of the proposed nonlinear model is verified with existing published one. Furthermore, numerical results are presented, which illustrate that nonlinearities exert a significant influence on the dynamic responses of the TLP. 展开更多
关键词 tension leg platform (TLP) finite displacement nonlinear dynamic response numerical solution wave loads
下载PDF
Experimental Study on Performance of Plain Concrete Due to Triaxial Variable-Amplitude Tension-Compression Cyclic Loading
12
作者 曹伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第3期104-109,共6页
An experimental study on performance of plain concrete under triaxial constant-amplitude and variable amplitude tension- compression cyclic loadings was carded out. The low level of the cyclic stress is 0. 2f and the ... An experimental study on performance of plain concrete under triaxial constant-amplitude and variable amplitude tension- compression cyclic loadings was carded out. The low level of the cyclic stress is 0. 2f and the upper level ranges between 0. 20f and 0. 55f., while the constant lateral pressure is 0. 3 f . The specimen failure mode, the three-stage evolution rule of the longitudinal strains and the damage evolution law under cyclic loading were analyzed. Furthermore, Miner's rule is proved not to be applicable to the cyclic loading conditions, hereby, a nonlinear cumulative damage model was established. Based on the model the remaining fatigue life was evaluated. The comparison whh the experiment resuhs shaws that the model is of better precision and applicability. 展开更多
关键词 CONCRETE triaxial tension-compression Cyclic loading three-stage evolution rule nonlinear cumulative damage model
下载PDF
万吨级张力拉伸机螺栓组预紧顺序工艺分析
13
作者 刘杰 汪恩辉 +4 位作者 何潜 李昌斌 左雁冰 常瑜 丛阳阳 《重型机械》 2024年第1期69-74,共6页
为改善万吨级张力拉伸机力学性能,提高整机的可靠性,利用Ansys分析了7种不同的预紧顺序对拉伸机螺栓组连接性能的影响,并通过螺栓剩余预紧力、横梁的变形和螺栓结合面平均压应力3个指标对不同预紧顺序进行评价。结果表明对于螺栓剩余预... 为改善万吨级张力拉伸机力学性能,提高整机的可靠性,利用Ansys分析了7种不同的预紧顺序对拉伸机螺栓组连接性能的影响,并通过螺栓剩余预紧力、横梁的变形和螺栓结合面平均压应力3个指标对不同预紧顺序进行评价。结果表明对于螺栓剩余预紧力,最佳序列为序列3,其次为序列5;对于横梁的变形,最佳序列为序列1,其余序列的标准差和极差基本一致;对于螺栓结合面平均压应力,最佳序列为序列3,其次为序列1。对三个指标进行加权平均分析,得出预紧序列3的加权平均分为9.958分,为最佳序列,并且两边向中间预紧明显优于中间向两边预紧的次序。此结论对拉伸机的装配具有重要的工程价值。 展开更多
关键词 万吨级 张力拉伸机 可靠性 螺栓 预紧顺序
下载PDF
高速线切割机床上丝辅助装置设计
14
作者 郭秀华 王子 +3 位作者 雷树硕 蔡昊辰 周夏成 陈祥林 《机械工程与自动化》 2024年第6期200-202,共3页
现有高速线切割机床的上丝装置在上丝过程中易发生断丝与张紧力不均衡现象,降低了机床切削稳定性和工件加工质量。通过分析现有装置的结构,提出增加推力球轴承,以防止锁紧螺母跟转而导致储丝盘卡顿引起断丝;根据丝线的拉力计算出弹簧压... 现有高速线切割机床的上丝装置在上丝过程中易发生断丝与张紧力不均衡现象,降低了机床切削稳定性和工件加工质量。通过分析现有装置的结构,提出增加推力球轴承,以防止锁紧螺母跟转而导致储丝盘卡顿引起断丝;根据丝线的拉力计算出弹簧压缩量及其他相关参数。经I-DEAS软件建模、装配、仿真表明,该装置可以满足生产要求。 展开更多
关键词 高速线切割机床 上丝装置 推力球轴承 弹簧 张紧力
下载PDF
数智化时代“三融合”会计学本科应用型人才培养模式构建
15
作者 张春风 侯婧 《廊坊师范学院学报(自然科学版)》 2024年第2期119-123,128,共6页
目前是以大智移物云区块链为标志的数智化时代发展的重要时期,数智化渗入会计实务工作,为会计学科建设和会计本科人才培养模式带来变革性影响。传统的会计本科人才培养出现如专业教育与思政教育两张皮、培养模式难以满足数智化时代对应... 目前是以大智移物云区块链为标志的数智化时代发展的重要时期,数智化渗入会计实务工作,为会计学科建设和会计本科人才培养模式带来变革性影响。传统的会计本科人才培养出现如专业教育与思政教育两张皮、培养模式难以满足数智化时代对应用型人才的高质量需求等问题,在此背景下,以“思政引领”为导向,大智移物云区块链等“技术载入”为载体“,实践落地”为落脚点,在“思政引领+技术载入+实践落地”三融合的基础上对会计学本科专业培养目标、课程体系、教学模式和保障机制进行重构,以培养满足高质量发展的会计专业复合应用型人才需求。 展开更多
关键词 数智化时代 思政引领 技术载入 实践落地 应用型人才培养
下载PDF
船型网箱运动-波浪场扰动-网衣受力耦合动力响应特性 被引量:1
16
作者 王益厚 付世晓 +3 位作者 许玉旺 李帅 傅强 刘富祥 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第2期147-155,共9页
船型网箱是一种由大型浮体、钢架、网衣系统及系泊系统构成的新型海洋养殖结构.大型浮体在波浪中产生的绕射和辐射作用会对波浪场产生扰动,进而改变网衣受力,这种相互作用此前还未被研究过.本文基于势流理论求得绕射波和辐射波在网衣周... 船型网箱是一种由大型浮体、钢架、网衣系统及系泊系统构成的新型海洋养殖结构.大型浮体在波浪中产生的绕射和辐射作用会对波浪场产生扰动,进而改变网衣受力,这种相互作用此前还未被研究过.本文基于势流理论求得绕射波和辐射波在网衣周围波浪场的速度传递函数,同时采用莫里森方程求解计及波浪场扰动的网衣水动力载荷;对网衣水动力载荷与浮体运动不断迭代计算,实现计及网箱运动-波浪场扰动-网衣受力耦合效应的船型网箱动力响应分析;最后,研究了不同幅值的规则波下这种耦合效应对网箱运动、网衣张力、容积损失和连接器载荷的影响规律.结果发现:波浪场扰动对网箱运动和容积损失的影响不明显,但是会导致网衣张力和连接器载荷明显增大,这能够为船型网箱的结构强度校核及安全设计提供指导. 展开更多
关键词 船型网箱 绕射波和辐射波 网箱运动 网衣张力 容积损失 连接器载荷
下载PDF
钢板混凝土剪力墙拉弯剪性能试验研究 被引量:1
17
作者 蒙春丽 柯晓军 +1 位作者 苏益声 梁胤鸿 《工程力学》 EI CSCD 北大核心 2024年第5期146-154,共9页
超高层建筑“细柔”特征容易引起底部剪力墙在强震下处于拉-弯-剪复合受力状态,中国《超限高层建筑工程抗震设防专项审查技术要点》(建质[2015]67号)建议墙肢采用配置型钢/钢板的方式来改善该种抗震性能,但缺乏相关试验研究。为此,进行... 超高层建筑“细柔”特征容易引起底部剪力墙在强震下处于拉-弯-剪复合受力状态,中国《超限高层建筑工程抗震设防专项审查技术要点》(建质[2015]67号)建议墙肢采用配置型钢/钢板的方式来改善该种抗震性能,但缺乏相关试验研究。为此,进行了6片钢板混凝土剪力墙的低周往复荷载试验,研究了轴拉比、含钢率及剪跨比对墙肢拉弯剪性能的影响。研究表明:拉弯剪作用引起钢板混凝土剪力墙密集的裂缝分布和显著的钢材强化,并导致其剪切-拉弯耦合破坏。轴拉比增大,墙肢承载力、初始抗侧刚度和延性分别降低22%、41%和39%;剪跨比减小,墙肢承载力和抗侧刚度至少提升23%;同时增大含钢率和降低剪跨比,墙肢延性提高10%。相比其他国家规范,中国规范对拉弯剪作用下钢板混凝土剪力墙的抗剪承载力预测效果更好,但其未能考虑高含钢率对裂面销栓力的影响,故建议采用暗柱的初始含钢率进行修正。 展开更多
关键词 钢板混凝土剪力墙 低周往复荷载 拉弯剪性能 剪切-拉弯耦合破坏 承载力
下载PDF
湿筛混凝土循环拉伸和循环拉压力学特性 被引量:1
18
作者 吴瑾 陈徐东 +1 位作者 甘元楠 张忠诚 《建筑材料学报》 EI CAS CSCD 北大核心 2024年第5期432-438,共7页
为探究湿筛混凝土在循环轴拉作用下的损伤过程和裂缝演变规律,基于声发射(AE)技术,对加载速率为1、10μm/(m·s)的混凝土试件分别进行循环拉伸和循环拉压试验.结果表明:随着循环次数的增加,试件的卸载和重加载刚度降低,塑性应变增大... 为探究湿筛混凝土在循环轴拉作用下的损伤过程和裂缝演变规律,基于声发射(AE)技术,对加载速率为1、10μm/(m·s)的混凝土试件分别进行循环拉伸和循环拉压试验.结果表明:随着循环次数的增加,试件的卸载和重加载刚度降低,塑性应变增大;当位移达到0.1 mm时,试件的载荷-位移曲线已接近软化阶段,此后裂缝发展速率降低,损伤变量减小;试件在循环加载过程中,随着位移的增加,AE累计振铃计数和累计撞击次数基本呈阶梯式增长. 展开更多
关键词 湿筛混凝土 循环拉伸加载 循环拉压加载 声发射
下载PDF
型钢拱架日光温室结构稳定性能及参数分析
19
作者 向彬涛 郭华 +2 位作者 王军林 孙建恒 高洪波 《农业工程学报》 EI CAS CSCD 北大核心 2024年第13期196-204,共9页
型钢拱架日光温室结构的主要受力构件长细比大,暴雪等极端灾害天气下易引发结构失稳灾变。针对此问题,该研究利用弹塑性力学理论和非线性有限单元法,建立型钢拱架日光温室结构精细化有限元模型,开展雪荷载下日光温室稳定性能分析;通过... 型钢拱架日光温室结构的主要受力构件长细比大,暴雪等极端灾害天气下易引发结构失稳灾变。针对此问题,该研究利用弹塑性力学理论和非线性有限单元法,建立型钢拱架日光温室结构精细化有限元模型,开展雪荷载下日光温室稳定性能分析;通过对型钢截面类型(平椭圆形截面、箱形截面和几字形截面)、温室跨度(8、10和12 m)、雪荷载分布形态(分布厚度非均匀和分布区域不对称)等参数下日光温室失稳全过程分析,分别确定日光温室稳定承载力,揭示雪荷载分布对日光温室稳定承载力的量化影响;结合日光温室的荷载系数-位移全过程曲线和不同加载时刻点的变形图、应力图、轴力图与弯矩图,从直观现象和内在本质两个层面深入探明日光温室的静力失稳机理。分析结果表明:在保证不发生平面外整体失稳的前提下,当型钢截面面积和翼缘宽度相同时,相较于箱形截面型钢、几字形截面型钢,采用平椭圆形截面型钢拱架的日光温室稳定承载力分别提高了19.2%和44.2%;跨度对日光温室稳定承载力的影响较大,与8 m跨度相比,10、12 m跨度的日光温室的荷载系数分别下降了27.1%和57.9%;相较于均匀分布雪荷载,在非均匀分布雪荷载下日光温室的稳定承载力最大下降63.8%;相较于不设置拉杆和撑杆的情况,单独设置拉杆的日光温室稳定承载力最大可提高9.0%,单独设置撑杆的日光温室稳定承载力最大可提高66.8%。该研究得出的结果和给出的建议可为型钢拱架日光温室结构抗雪设计、稳定性研究和防灾分析提供技术指导和理论参考。 展开更多
关键词 温室 结构 荷载 型钢拱架 失稳机理 跨度 拉杆 撑杆
下载PDF
拉-压变轴力下小剪跨比RC剪力墙受剪试验研究
20
作者 黄健康 程小卫 +1 位作者 李易 孙亚 《工程力学》 EI CSCD 北大核心 2024年第S01期228-237,共10页
近年来,高层建筑中底部剪力墙因受拉,处于拉-压变轴力和水平荷载耦合受力的问题得到了广泛的关注。为了研究拉-压变轴力下小剪跨比钢筋混凝土(RC)剪力墙的受剪性能,该文完成了3个剪跨比为1.0的RC剪力墙在拉-压变轴力下的往复受剪试验,... 近年来,高层建筑中底部剪力墙因受拉,处于拉-压变轴力和水平荷载耦合受力的问题得到了广泛的关注。为了研究拉-压变轴力下小剪跨比钢筋混凝土(RC)剪力墙的受剪性能,该文完成了3个剪跨比为1.0的RC剪力墙在拉-压变轴力下的往复受剪试验,研究参数为拉-压变轴力变化幅值和加载路径。结果表明:不同加载路径下RC墙均在压剪方向发生剪压破坏,压剪方向极限位移角为1.2%~1.4%;拉-压变轴力变化幅值改变墙体拉剪和压剪承载力,加载路径对墙体的拉剪强度有一定的影响,但对压剪强度影响很小;拉-压变轴力下剪力墙的滞回曲线呈现明显不对称现象,拉-压变轴力的变化幅值对滞回曲线的形状影响较小,但加载路径改变滞回曲线的形状;拉-压变轴力的变化幅值将增加剪力墙拉剪与压剪刚度的差别,在双肢墙结构中可能导致更多的剪力从受拉墙体转移到受压墙体;基于OpenSees建立了可准确模拟拉-压变轴力下RC剪力墙受剪行为的有限元模型。 展开更多
关键词 钢筋混凝土剪力墙 拉-压变轴力 往复受剪试验 破坏模式 承载力
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部