In order to analyze the pavement stress caused by vehicle bumping at an approach slab, a simplified four-wheeled bi- axle vehicle-moving model is proposed. The effect of damping and vibration reduction in the process ...In order to analyze the pavement stress caused by vehicle bumping at an approach slab, a simplified four-wheeled bi- axle vehicle-moving model is proposed. The effect of damping and vibration reduction in the process of vehicle-moving is not considered. Based on the position change of vehicle wheels at the approach slab, the vehicle dynamic vibration equations are summarized. Meanwhile, the undetermined coefficients of the vibration equations are obtained using the boundary and initial conditions of the vehicle. The analytical motion solutions of rear and front wheels at different stages are concluded. Consequently, a four-wheeled vehicle model is developed and vibration equations are provided, which can be used to analyze the impact of complicated stress on pavement. The results show that the excessive stress and stress concentration will occur at the approach slab, and it needs to be strengthened.展开更多
为明确无筋超高性能混凝土(Ultra High Performance Concrete,UHPC)单向板和周边支承方板的受弯性能,分别对其进行了跨中局部荷载作用下受弯性能的破坏性试验.基于本文及其他文献的试验结果,考虑钢纤维特征参数的影响,建立了UHPC材料的...为明确无筋超高性能混凝土(Ultra High Performance Concrete,UHPC)单向板和周边支承方板的受弯性能,分别对其进行了跨中局部荷载作用下受弯性能的破坏性试验.基于本文及其他文献的试验结果,考虑钢纤维特征参数的影响,建立了UHPC材料的受拉本构.通过数值分析,提出了无筋UHPC板截面受拉区等效均布应力折减系数k的计算公式.根据试验和分析结果,建立了无筋UHPC单向板和周边支承方板抗弯承载能力的简化计算方法.结果表明:无筋UHPC单向板和周边支承方板均发生由UHPC抗拉性能所控制的受拉破坏.由于UHPC内钢纤维的增强作用,无筋UHPC板的抗弯承载能力和极限变形分别较相应的开裂荷载和开裂变形明显提高且表现出一定的延性破坏特征,但UHPC的受拉塑性尚不足以保证周边支承方板中完全塑性铰线机构的形成,塑性铰线法的上限解不适于预测周边支承方板的极限荷载,而静力法的下限解却能给出精度较高且偏于安全的预测结果;试验结果验证了所提无筋UHPC单向板和周边支承方板极限承载能力简化计算方法的适用性.展开更多
基金The Doctoral Program of Central South University (No. 2010ybfz048)the National High Technology Research and Development Program of China (863 Program) (No. 2007AA021908)
文摘In order to analyze the pavement stress caused by vehicle bumping at an approach slab, a simplified four-wheeled bi- axle vehicle-moving model is proposed. The effect of damping and vibration reduction in the process of vehicle-moving is not considered. Based on the position change of vehicle wheels at the approach slab, the vehicle dynamic vibration equations are summarized. Meanwhile, the undetermined coefficients of the vibration equations are obtained using the boundary and initial conditions of the vehicle. The analytical motion solutions of rear and front wheels at different stages are concluded. Consequently, a four-wheeled vehicle model is developed and vibration equations are provided, which can be used to analyze the impact of complicated stress on pavement. The results show that the excessive stress and stress concentration will occur at the approach slab, and it needs to be strengthened.
文摘为明确无筋超高性能混凝土(Ultra High Performance Concrete,UHPC)单向板和周边支承方板的受弯性能,分别对其进行了跨中局部荷载作用下受弯性能的破坏性试验.基于本文及其他文献的试验结果,考虑钢纤维特征参数的影响,建立了UHPC材料的受拉本构.通过数值分析,提出了无筋UHPC板截面受拉区等效均布应力折减系数k的计算公式.根据试验和分析结果,建立了无筋UHPC单向板和周边支承方板抗弯承载能力的简化计算方法.结果表明:无筋UHPC单向板和周边支承方板均发生由UHPC抗拉性能所控制的受拉破坏.由于UHPC内钢纤维的增强作用,无筋UHPC板的抗弯承载能力和极限变形分别较相应的开裂荷载和开裂变形明显提高且表现出一定的延性破坏特征,但UHPC的受拉塑性尚不足以保证周边支承方板中完全塑性铰线机构的形成,塑性铰线法的上限解不适于预测周边支承方板的极限荷载,而静力法的下限解却能给出精度较高且偏于安全的预测结果;试验结果验证了所提无筋UHPC单向板和周边支承方板极限承载能力简化计算方法的适用性.