To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furtherm...To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furthermore, the flight control problem is formulated as a robust model tracking control problem. And then, based on the robust parametric approach, eigenstructure assignment and reference model tracking theory, a parametric optimization method for robust controller design is presented. The simulation results show the effectiveness of the proposed approach.展开更多
A global trajectory tracking controller is presented for underactuated AUVs with only surge force and yaw moment in the horizontal plane. A transformation is introduced to represent the tracking error system into a ca...A global trajectory tracking controller is presented for underactuated AUVs with only surge force and yaw moment in the horizontal plane. A transformation is introduced to represent the tracking error system into a cascade form. The global and uniform asymptotic stabilization problem of the resulting cascade system is reduced to the stabilization problem of two subsystems by use of the cascade approach. For the stabilization of the subsystem involving the yaw moment, a control law is proposed based on the feedback linearization method. Another subsystem is stabilized by designing a fuzzy sliding mode controller which can offer a systematical means of constructing a set of shrinking-span and dilating-span membership functions. In order to demonstrate the practicability of the proposed controller, control constraints, parameter uncertainties, and external disturbances are considered according to practical situation of AUVs. Simulation results show very good tracking performance and robustness of the proposed control schemes.展开更多
A new modeling and filtering approach for tracking maneuvering targets is presented in thispaper.The approach,which makes optimal estimate for the model With the random variable possible,depends on random step modelin...A new modeling and filtering approach for tracking maneuvering targets is presented in thispaper.The approach,which makes optimal estimate for the model With the random variable possible,depends on random step modeling of target maneuvers.In the new model,the unknown targetacceleration is treated as a random variable and then estimated directly.A detector is designed tofind out the target maneuvers and the estimation algorithm will be restarted when the maneuvers oc-cur.Combination of three-dimention Kalman filter with a detector forms a tracker for maneuveringtargets.The new tracking scheme is easy to implement and its capability is illustrated in two trackingexamples in which the new approach is compared with Mooses’on the performance.展开更多
The year 1993 was the fifteenth of China’s reform and opening to the outside. Its economy sustained double digit growth for two years running. Last year, domestic GNP was RMB3,138 billion, a 13.4 percent increase com...The year 1993 was the fifteenth of China’s reform and opening to the outside. Its economy sustained double digit growth for two years running. Last year, domestic GNP was RMB3,138 billion, a 13.4 percent increase compared with the previous year’s 13.2 percent.展开更多
An objective prediction approach to the 6 h- 144 h track and intensity of tropical cyclones over the northwestern Pacific is proposed. On the basis of both analog deviation technique and completed historical sample cu...An objective prediction approach to the 6 h- 144 h track and intensity of tropical cyclones over the northwestern Pacific is proposed. On the basis of both analog deviation technique and completed historical sample curve library, the track or intensity prediction for each forecast period are determined respectively through the optimum weighted superposition of displacement or intensity change of the cases, with different number and weighted coefficient corresponding to minimal analog deviation, from different tropical cyclone or different stage of the same cyclone. so that the prediction results for both forecast period and entire process are optimal. The verification suggests that the approach exhibits better forecast performance than other previous forecast methods by having remarkable decreasing forecast errors in short- and medium-range forecast of both track and intensity,and that the approach can also be used to predict effectively the decay process of tropical cyclone and is able to predict anomalous track and tropical depression.展开更多
A robust task space tracking scheme is proposed for the free-flying space manipulator system. The dynamic equations of the system are derived via the law of momentum conservation, and then a linear state space represe...A robust task space tracking scheme is proposed for the free-flying space manipulator system. The dynamic equations of the system are derived via the law of momentum conservation, and then a linear state space representation is formulated by local linearization. A parametric approach is applied by using the eigenstructure assignment theory and the model reference method. A feedback stabilizing controller and a feedforward compensation controller are built based on the approach. Then an optimization procedure is followed after that to obtain the desired requirement and characteristics. Simulation results are presented to show the effectiveness of the proposed method.展开更多
To improve the reliability and accuracy of visual tracker,a robust visual tracking algorithm based on multi-cues fusion under Bayesian framework is proposed.The weighed color and texture cues of the object are applied...To improve the reliability and accuracy of visual tracker,a robust visual tracking algorithm based on multi-cues fusion under Bayesian framework is proposed.The weighed color and texture cues of the object are applied to describe the moving object.An adjustable observation model is incorporated into particle filtering,which utilizes the properties of particle filter for coping with non-linear,non-Gaussian assumption and the ability to predict the position of the moving object in a cluttered environment and two complementary attributes are employed to estimate the matching similarity dynamically in term of the likelihood ratio factors;furthermore tunes the weight values according to the confidence map of the color and texture feature on-line adaptively to reconfigure the optimal observation likelihood model,which ensured attaining the maximum likelihood ratio in the tracking scenario even if in the situations where the object is occluded or illumination,pose and scale are time-variant.The experimental result shows that the algorithm can track a moving object accurately while the reliability of tracking in a challenging case is validated in the experimentation.展开更多
Based on the vehicle track coupling dynamics theory, a new spatial dynamic numerical model of vehicle track subgrade coupling system was established considering the interaction among different structural layers in the...Based on the vehicle track coupling dynamics theory, a new spatial dynamic numerical model of vehicle track subgrade coupling system was established considering the interaction among different structural layers in the subgrade system. The dynamic responses of the coupled system were analyzed when the speed of train was 350 km/h and the transition was filled with graded broken stones mixed with 5% cement. The results indicate that the setting form of bridge-approach embankment section has little effect on the dynamic responses, thus designers can choose it on account of the practical circumstances. Because the location about 5 m from the bridge abutment has the greatest deformation, the stiffness within 0 5 m zone behind the abutment should be specially designed. The results of the study from vehicle track dynamics show that the maximum allowable track deflection angle should be 0.09% and the coefficient of subgrade reaction(K30) is greater than 190 MPa within the 0 5 m zone behind the abutment and greater than 150 MPa in other zones.展开更多
This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonline...This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonlinear subsystems with interconnect terms.Based on the internal model principle,a disturbance compensator is constructed such that the ith subsystem with external persistent disturbances is transformed into an augmented subsystem without disturbances.According to the sensitivity approach,the optimal tracking control law for the ith nonlinear subsystem can be obtained.The optimal tracking control law for the nonlinear large-scale systems can be obtained.A numerical simulation shows that the method is effective.展开更多
An optimal tracking control (OTC) problem for linear time-delay large-scale systems affected by external persistent disturbances is investigated. Based on the internal model principle, a disturbance compensator is c...An optimal tracking control (OTC) problem for linear time-delay large-scale systems affected by external persistent disturbances is investigated. Based on the internal model principle, a disturbance compensator is constructed. The system with persistent disturbances is transformed into an augmented system without persistent disturbances. The original OTC problem of linear time-delay system is transformed into a sequence of linear two- point boundary value (TPBV) problems by introducing a sensitivity parameter and expanding Maclaurin series around it. By solving an OTC law of the augmented system, the OTC law of the original system is obtained. A numerical simulation is provided to illustrate the effectiveness of the proposed method.展开更多
This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles(AUVs) in the presence of wave disturbances. An approximate optimal tracking control(AOTC) approach i...This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles(AUVs) in the presence of wave disturbances. An approximate optimal tracking control(AOTC) approach is proposed. Firstly, a six-degrees-of-freedom(six-DOF) AUV model with its body-fixed coordinate system is decoupled and simplified and then a nonlinear control model of AUVs in the vertical plane is given. Also, an exosystem model of wave disturbances is constructed based on Hirom approximation formula. Secondly, the time-parameterized desired trajectory which is tracked by the AUV's system is represented by the exosystem. Then, the coupled two-point boundary value(TPBV) problem of optimal tracking control for AUVs is derived from the theory of quadratic optimal control. By using a recently developed successive approximation approach to construct sequences, the coupled TPBV problem is transformed into a problem of solving two decoupled linear differential sequences of state vectors and adjoint vectors. By iteratively solving the two equation sequences, the AOTC law is obtained, which consists of a nonlinear optimal feedback item, an expected output tracking item, a feedforward disturbances rejection item, and a nonlinear compensatory term. Furthermore, a wave disturbances observer model is designed in order to solve the physically realizable problem. Simulation is carried out by using the Remote Environmental Unit(REMUS) AUV model to demonstrate the effectiveness of the proposed algorithm.展开更多
In this paper, the output tracking control is investigated for a class of nonlinear systems when only output is available for feedback. Based on the multivariable analog of circle criterion, an observer is first intro...In this paper, the output tracking control is investigated for a class of nonlinear systems when only output is available for feedback. Based on the multivariable analog of circle criterion, an observer is first introduced. Then, the observer-based output tracking controller is constructively designed by using the integral backstepping approach together with completing square. It is shown that, under relatively mild conditions, all the closed-loop signals are uniformly bounded. Meanwhile the system output asymptotically tracks the desired output. A simulation example is given to illustrate the effectiveness of the theoretical results.展开更多
Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density from Jun...Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density from June to October. This model is the first approach to target seasonal TC track clusters covering the entire western North Pacific (WNP) basin, and may represent a milestone for seasonal TC forecasting, using a simple statistical method that can be applied at weather operation centers. In this note, we describe the procedure of the track-pattern-based model with brief technical background to provide practical information on the use and operation of the model. The model comprises three major steps. First, long-term data of WNP TC tracks reveal seven climatological track clusters. Second, the TC counts for each cluster are predicted using a hybrid statistical-dynamical method, using the seasonal prediction of large-scale environments. Third, the final forecast map of track density is constructed by merging the spatial probabilities of the seven clusters and applying necessary bias corrections. Although the model is developed to issue the seasonal forecast in mid-May, it can be applied to alternative dates and target seasons following the procedure described in this note. Work continues on establishing an automatic system for this model at the NTC.展开更多
基金Sponsored by the Major Program of National Natural Science Foundation of China (Grant No.60710002)the Program for Changjiang Scholars and Innovative Research Team in University
文摘To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furthermore, the flight control problem is formulated as a robust model tracking control problem. And then, based on the robust parametric approach, eigenstructure assignment and reference model tracking theory, a parametric optimization method for robust controller design is presented. The simulation results show the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(Grant No.10802026)
文摘A global trajectory tracking controller is presented for underactuated AUVs with only surge force and yaw moment in the horizontal plane. A transformation is introduced to represent the tracking error system into a cascade form. The global and uniform asymptotic stabilization problem of the resulting cascade system is reduced to the stabilization problem of two subsystems by use of the cascade approach. For the stabilization of the subsystem involving the yaw moment, a control law is proposed based on the feedback linearization method. Another subsystem is stabilized by designing a fuzzy sliding mode controller which can offer a systematical means of constructing a set of shrinking-span and dilating-span membership functions. In order to demonstrate the practicability of the proposed controller, control constraints, parameter uncertainties, and external disturbances are considered according to practical situation of AUVs. Simulation results show very good tracking performance and robustness of the proposed control schemes.
文摘A new modeling and filtering approach for tracking maneuvering targets is presented in thispaper.The approach,which makes optimal estimate for the model With the random variable possible,depends on random step modeling of target maneuvers.In the new model,the unknown targetacceleration is treated as a random variable and then estimated directly.A detector is designed tofind out the target maneuvers and the estimation algorithm will be restarted when the maneuvers oc-cur.Combination of three-dimention Kalman filter with a detector forms a tracker for maneuveringtargets.The new tracking scheme is easy to implement and its capability is illustrated in two trackingexamples in which the new approach is compared with Mooses’on the performance.
文摘The year 1993 was the fifteenth of China’s reform and opening to the outside. Its economy sustained double digit growth for two years running. Last year, domestic GNP was RMB3,138 billion, a 13.4 percent increase compared with the previous year’s 13.2 percent.
文摘An objective prediction approach to the 6 h- 144 h track and intensity of tropical cyclones over the northwestern Pacific is proposed. On the basis of both analog deviation technique and completed historical sample curve library, the track or intensity prediction for each forecast period are determined respectively through the optimum weighted superposition of displacement or intensity change of the cases, with different number and weighted coefficient corresponding to minimal analog deviation, from different tropical cyclone or different stage of the same cyclone. so that the prediction results for both forecast period and entire process are optimal. The verification suggests that the approach exhibits better forecast performance than other previous forecast methods by having remarkable decreasing forecast errors in short- and medium-range forecast of both track and intensity,and that the approach can also be used to predict effectively the decay process of tropical cyclone and is able to predict anomalous track and tropical depression.
基金supported by the National Natural Science Foundation of China (61074111)the Innovative Team Program of the National Natural Science Foundation of China (61021002)
文摘A robust task space tracking scheme is proposed for the free-flying space manipulator system. The dynamic equations of the system are derived via the law of momentum conservation, and then a linear state space representation is formulated by local linearization. A parametric approach is applied by using the eigenstructure assignment theory and the model reference method. A feedback stabilizing controller and a feedforward compensation controller are built based on the approach. Then an optimization procedure is followed after that to obtain the desired requirement and characteristics. Simulation results are presented to show the effectiveness of the proposed method.
文摘To improve the reliability and accuracy of visual tracker,a robust visual tracking algorithm based on multi-cues fusion under Bayesian framework is proposed.The weighed color and texture cues of the object are applied to describe the moving object.An adjustable observation model is incorporated into particle filtering,which utilizes the properties of particle filter for coping with non-linear,non-Gaussian assumption and the ability to predict the position of the moving object in a cluttered environment and two complementary attributes are employed to estimate the matching similarity dynamically in term of the likelihood ratio factors;furthermore tunes the weight values according to the confidence map of the color and texture feature on-line adaptively to reconfigure the optimal observation likelihood model,which ensured attaining the maximum likelihood ratio in the tracking scenario even if in the situations where the object is occluded or illumination,pose and scale are time-variant.The experimental result shows that the algorithm can track a moving object accurately while the reliability of tracking in a challenging case is validated in the experimentation.
基金Project(41030742) supported by the National Natural Science Foundation of ChinaProject(2009G010-c) supported by the Technological Research and Development Programs of the Ministry of Railways,China
文摘Based on the vehicle track coupling dynamics theory, a new spatial dynamic numerical model of vehicle track subgrade coupling system was established considering the interaction among different structural layers in the subgrade system. The dynamic responses of the coupled system were analyzed when the speed of train was 350 km/h and the transition was filled with graded broken stones mixed with 5% cement. The results indicate that the setting form of bridge-approach embankment section has little effect on the dynamic responses, thus designers can choose it on account of the practical circumstances. Because the location about 5 m from the bridge abutment has the greatest deformation, the stiffness within 0 5 m zone behind the abutment should be specially designed. The results of the study from vehicle track dynamics show that the maximum allowable track deflection angle should be 0.09% and the coefficient of subgrade reaction(K30) is greater than 190 MPa within the 0 5 m zone behind the abutment and greater than 150 MPa in other zones.
基金supported by the National Natural Science Foundation of China(No.60574023)the Natural Science Foundation of Shandong Province(No.Z2005G01)
文摘This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonlinear subsystems with interconnect terms.Based on the internal model principle,a disturbance compensator is constructed such that the ith subsystem with external persistent disturbances is transformed into an augmented subsystem without disturbances.According to the sensitivity approach,the optimal tracking control law for the ith nonlinear subsystem can be obtained.The optimal tracking control law for the nonlinear large-scale systems can be obtained.A numerical simulation shows that the method is effective.
基金supported by the National Natural Science Foundation of China(60574023)the Natural Science Foundation of Shandong Province(Z2005G01).
文摘An optimal tracking control (OTC) problem for linear time-delay large-scale systems affected by external persistent disturbances is investigated. Based on the internal model principle, a disturbance compensator is constructed. The system with persistent disturbances is transformed into an augmented system without persistent disturbances. The original OTC problem of linear time-delay system is transformed into a sequence of linear two- point boundary value (TPBV) problems by introducing a sensitivity parameter and expanding Maclaurin series around it. By solving an OTC law of the augmented system, the OTC law of the original system is obtained. A numerical simulation is provided to illustrate the effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China (41276085)the Natural Science Foundation of Shandong Province (ZR2015FM004)
文摘This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles(AUVs) in the presence of wave disturbances. An approximate optimal tracking control(AOTC) approach is proposed. Firstly, a six-degrees-of-freedom(six-DOF) AUV model with its body-fixed coordinate system is decoupled and simplified and then a nonlinear control model of AUVs in the vertical plane is given. Also, an exosystem model of wave disturbances is constructed based on Hirom approximation formula. Secondly, the time-parameterized desired trajectory which is tracked by the AUV's system is represented by the exosystem. Then, the coupled two-point boundary value(TPBV) problem of optimal tracking control for AUVs is derived from the theory of quadratic optimal control. By using a recently developed successive approximation approach to construct sequences, the coupled TPBV problem is transformed into a problem of solving two decoupled linear differential sequences of state vectors and adjoint vectors. By iteratively solving the two equation sequences, the AOTC law is obtained, which consists of a nonlinear optimal feedback item, an expected output tracking item, a feedforward disturbances rejection item, and a nonlinear compensatory term. Furthermore, a wave disturbances observer model is designed in order to solve the physically realizable problem. Simulation is carried out by using the Remote Environmental Unit(REMUS) AUV model to demonstrate the effectiveness of the proposed algorithm.
基金This work was supported by the National Natural Science Foundation of China(No.60304002), and the Science and Technical Development Plan ofShandong Province(No.2004GG4204014).
文摘In this paper, the output tracking control is investigated for a class of nonlinear systems when only output is available for feedback. Based on the multivariable analog of circle criterion, an observer is first introduced. Then, the observer-based output tracking controller is constructively designed by using the integral backstepping approach together with completing square. It is shown that, under relatively mild conditions, all the closed-loop signals are uniformly bounded. Meanwhile the system output asymptotically tracks the desired output. A simulation example is given to illustrate the effectiveness of the theoretical results.
基金funded by the Korea Meteorological Administration Research and Development Program under Grant CATER 2012-2040supported by the BK21 project of the Korean government
文摘Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density from June to October. This model is the first approach to target seasonal TC track clusters covering the entire western North Pacific (WNP) basin, and may represent a milestone for seasonal TC forecasting, using a simple statistical method that can be applied at weather operation centers. In this note, we describe the procedure of the track-pattern-based model with brief technical background to provide practical information on the use and operation of the model. The model comprises three major steps. First, long-term data of WNP TC tracks reveal seven climatological track clusters. Second, the TC counts for each cluster are predicted using a hybrid statistical-dynamical method, using the seasonal prediction of large-scale environments. Third, the final forecast map of track density is constructed by merging the spatial probabilities of the seven clusters and applying necessary bias corrections. Although the model is developed to issue the seasonal forecast in mid-May, it can be applied to alternative dates and target seasons following the procedure described in this note. Work continues on establishing an automatic system for this model at the NTC.