Recently Guo introduced integrated Meyer -Konig and Zeller operators and studied the rate of convergence for function of bounded variation. In this note we give a sharp estimate for these operators.
In present paper, we derive the quasi-least squares estimation(QLSE) and approximate maximum likelihood estimation(AMLE) for the Birnbaum-Saunders fatigue life distribution under multiply Type-Ⅱcensoring. Furthermore...In present paper, we derive the quasi-least squares estimation(QLSE) and approximate maximum likelihood estimation(AMLE) for the Birnbaum-Saunders fatigue life distribution under multiply Type-Ⅱcensoring. Furthermore, we get the variance and covariance of the approximate maximum likelihood estimation.展开更多
The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen-...The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.展开更多
In the present article, we deal with the so-called overconvergence phenomenon in C of a slightly modified Post-Widder operator of real variable, that is with the extension of its approximation properties from the real...In the present article, we deal with the so-called overconvergence phenomenon in C of a slightly modified Post-Widder operator of real variable, that is with the extension of its approximation properties from the real axis in the complex plane.In this sense, error estimates in approximation and a quantitative Voronovskaya-type asymptotic formula are established.展开更多
This paper investigates the finite element approximation of a class of parameter estimation problems which is the form of performance as the optimal control problems governed by bilinear parabolic equations,where the ...This paper investigates the finite element approximation of a class of parameter estimation problems which is the form of performance as the optimal control problems governed by bilinear parabolic equations,where the state and co-state are discretized by piecewise linear functions and control is approximated by piecewise constant functions.The authors derive some a priori error estimates for both the control and state approximations.Finally,the numerical experiments verify the theoretical results.展开更多
基金Research supported by Council of Scientific and Industrial Research, India under award no.9/143(163)/91-EER-
文摘Recently Guo introduced integrated Meyer -Konig and Zeller operators and studied the rate of convergence for function of bounded variation. In this note we give a sharp estimate for these operators.
基金Supported by the NSF of China(69971016)Supported by the Shanghai Higher Learning Science and Technology Development Foundation(04DB24)
文摘In present paper, we derive the quasi-least squares estimation(QLSE) and approximate maximum likelihood estimation(AMLE) for the Birnbaum-Saunders fatigue life distribution under multiply Type-Ⅱcensoring. Furthermore, we get the variance and covariance of the approximate maximum likelihood estimation.
文摘The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.
文摘In the present article, we deal with the so-called overconvergence phenomenon in C of a slightly modified Post-Widder operator of real variable, that is with the extension of its approximation properties from the real axis in the complex plane.In this sense, error estimates in approximation and a quantitative Voronovskaya-type asymptotic formula are established.
基金supported by the National Natural Science Foundation of China under Grant Nos.11101025,11071080,11171113the National Natural Science Foundation of China under Grant No.11126279+1 种基金the Fundamental Research Funds for the Central Universitiesthe Youth Foundation of Tianyuan Mathematics
文摘This paper investigates the finite element approximation of a class of parameter estimation problems which is the form of performance as the optimal control problems governed by bilinear parabolic equations,where the state and co-state are discretized by piecewise linear functions and control is approximated by piecewise constant functions.The authors derive some a priori error estimates for both the control and state approximations.Finally,the numerical experiments verify the theoretical results.