Results regarding best approximation and best Simultaneous approximation on convex metric spaces are Obtained.Existence of fixed points for an ultimately nonexpansive semigroup of mappings is also shown.
Using a recent result regarding the fixed points of multivalued mappings, the existence of invariant best simultaneous approximation in chainable metric space is proved.
Let E be a real Banach space and K be a nonempty closed convex and bounded subset of E. Let Ti : K→ K, i=1, 2,... ,N, be N uniformly L-Lipschitzian, uniformly asymptotically regular with sequences {ε^(i)n} and as...Let E be a real Banach space and K be a nonempty closed convex and bounded subset of E. Let Ti : K→ K, i=1, 2,... ,N, be N uniformly L-Lipschitzian, uniformly asymptotically regular with sequences {ε^(i)n} and asymptotically pseudocontractive mappings with sequences {κ^(i)n}, where {κ^(i)n} and {ε^(i)n}, i = 1, 2,... ,N, satisfy certain mild conditions. Let a sequence {xn} be generated from x1 ∈ K by zn:= (1-μn)xn+μnT^nnxn, xn+1 := λnθnx1+ [1 - λn(1 + θn)]xn + λnT^nnzn for all integer n ≥ 1, where Tn = Tn(mod N), and {λn}, {θn} and {μn} are three real sequences in [0, 1] satisfying appropriate conditions. Then ||xn- Tixn||→ 0 as n→∞ for each l ∈ {1, 2,..., N}. The results presented in this paper generalize and improve the corresponding results of Chidume and Zegeye, Reinermann, Rhoades and Schu.展开更多
文摘Results regarding best approximation and best Simultaneous approximation on convex metric spaces are Obtained.Existence of fixed points for an ultimately nonexpansive semigroup of mappings is also shown.
文摘Using a recent result regarding the fixed points of multivalued mappings, the existence of invariant best simultaneous approximation in chainable metric space is proved.
基金Foundation item: the National Natural Science Foundation of China (No. 10771141) the Natural Science Foundation of Zhejiang Province (Y605191) the Natural Science Foundation of Heilongjiang Province (No. A0211) and the Scientific Research Foundation from Zhejiang Province Education Committee (No. 20051897).
文摘Let E be a real Banach space and K be a nonempty closed convex and bounded subset of E. Let Ti : K→ K, i=1, 2,... ,N, be N uniformly L-Lipschitzian, uniformly asymptotically regular with sequences {ε^(i)n} and asymptotically pseudocontractive mappings with sequences {κ^(i)n}, where {κ^(i)n} and {ε^(i)n}, i = 1, 2,... ,N, satisfy certain mild conditions. Let a sequence {xn} be generated from x1 ∈ K by zn:= (1-μn)xn+μnT^nnxn, xn+1 := λnθnx1+ [1 - λn(1 + θn)]xn + λnT^nnzn for all integer n ≥ 1, where Tn = Tn(mod N), and {λn}, {θn} and {μn} are three real sequences in [0, 1] satisfying appropriate conditions. Then ||xn- Tixn||→ 0 as n→∞ for each l ∈ {1, 2,..., N}. The results presented in this paper generalize and improve the corresponding results of Chidume and Zegeye, Reinermann, Rhoades and Schu.