To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the s...To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.展开更多
In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that ...In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that the contact angle in Young's equation refers to the super-nano contact angle. Whether the equation is applicable to nanoscale systems remains an open question. Zhu et al. [College Phys. 4 7(1985)] obtained the most simple and convenient approximate formula, known as the Zhu–Qian approximate formula of Young's equation. Here, using molecular dynamics simulation, we test its applicability for nanodrops. Molecular dynamics simulations are performed on argon liquid cylinders placed on a solid surface under a temperature of 90 K, using Lennard–Jones potentials for the interaction between liquid molecules and between a liquid molecule and a solid molecule with the variable coefficient of strength a. Eight values of a between 0.650 and 0.825 are used. By comparison of the super-nano contact angles obtained from molecular dynamics simulation and the Zhu–Qian approximate formula of Young's equation, we find that it is qualitatively applicable for nanoscale systems.展开更多
There are such problems as convergence and stability of numerical calculations during multivariate interpolation. Moreover, it is very difficult to construct a overall multivariate numerical interpolation formula to e...There are such problems as convergence and stability of numerical calculations during multivariate interpolation. Moreover, it is very difficult to construct a overall multivariate numerical interpolation formula to ensure convergence for a set of irregular nodes. In this paper by means of an optimal binary interpolation formula given in a reproducing kernel space, a high precision overall two dimension numerical integral formula is established and its advantage is that it ensures the convergence for arbitrary irregular node set in the integral domain.展开更多
For the generalized inverse function-valued Pade approximants, its intact computation formulas are given. The explicit determinantal formulas for the denominator scalar polynomials and the numerator function-valued po...For the generalized inverse function-valued Pade approximants, its intact computation formulas are given. The explicit determinantal formulas for the denominator scalar polynomials and the numerator function-valued polynomials are first established. A useful existence condition is given by means of determinant form.展开更多
The generalized inverse function-valued Padé approximant was defined to solve the integral equations. However, it is difficult to compute the approximants by some high-order determinant formulas. In this paper, t...The generalized inverse function-valued Padé approximant was defined to solve the integral equations. However, it is difficult to compute the approximants by some high-order determinant formulas. In this paper, to simplify computation of the function-valued Padé approximants, an efficient Pfaffian formula for the determinants was extended from the matrix form to the function-valued form. As an important application, a Pfaffian formula of [4/4] type Padé approximant was established.展开更多
Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed.Based on an approximation of the elliptic integral,two new logarithmic formulae ...Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed.Based on an approximation of the elliptic integral,two new logarithmic formulae for large amplitude close to 180° are obtained.Considering the trigonometric function modulation results from the dependence of relative error on the amplitude,we realize accurate approximation period expressions for any amplitude between 0 and 180°.A relative error less than 0.02% is achieved for any amplitude.This kind of modulation is also effective for other large-amplitude logarithmic approximation expressions.展开更多
In this article, the objective is to introduce an algorithm to produce the quaternary m-point (for any integer m>1) approximating subdivision schemes, which have smaller support and higher smoothness, comparing to ...In this article, the objective is to introduce an algorithm to produce the quaternary m-point (for any integer m>1) approximating subdivision schemes, which have smaller support and higher smoothness, comparing to binary and ternary schemes. The proposed algorithm has been derived from uniform B-spline basis function using the Cox-de Boor recursion formula. In order to determine the convergence and smoothness of the proposed schemes, the Laurent polynomial method has been used.展开更多
In this paper two sequences of generalized Landau linear positive operators are introduced. They can be applied in approximating continuous functions with arbitrary growth order, defined on a finite interval or the wh...In this paper two sequences of generalized Landau linear positive operators are introduced. They can be applied in approximating continuous functions with arbitrary growth order, defined on a finite interval or the whole real axis. The properties of approximation are studied and their asymptotic formulae are presented. These results show that their degrees of approximation are the best among existing operator sequences of Landau type, for example, their degrees of approximation for C 2[0, 1] are O(1/n 2) but corresponding degree of ordinary Landau operators are only O(1/n).展开更多
We suggest that the Lamb shift can be approximated by a very simple function that seems accurate enough for most experimental researchers working with elements where the relativistic effects of the electron are minima...We suggest that the Lamb shift can be approximated by a very simple function that seems accurate enough for most experimental researchers working with elements where the relativistic effects of the electron are minimal, that is up to element 80 or so. Even if our new approximation does not show anything new in quantum chemistry per se, we think that it can be useful for experimental researchers and students of both quantum physics and chemistry;now everyone can calculate the Lamb shift on the back of an envelope.展开更多
The effect of porosity on surface wave scattering by a vertical porous barrier over a rectangular trench is studied here under the assumption of linearized theory of water waves.The fluid region is divided into four s...The effect of porosity on surface wave scattering by a vertical porous barrier over a rectangular trench is studied here under the assumption of linearized theory of water waves.The fluid region is divided into four subregions depending on the position of the barrier and the trench.Using the Havelock’s expansion of water wave potential in different regions along with suitable matching conditions at the interface of different regions,the problem is formulated in terms of three integral equations.Considering the edge conditions at the submerged end of the barrier and at the edges of the trench,these integral equations are solved using multi-term Galerkin approximation technique taking orthogonal Chebyshev’s polynomials and ultra-spherical Gegenbauer polynomial as its basis function and also simple polynomial as basis function.Using the solutions of the integral equations,the reflection coefficient,transmission coefficient,energy dissipation coefficient and horizontal wave force are determined and depicted graphically.It was observed that the rate of convergence of the Galerkin method in computing the reflection coefficient,considering special functions as basis function is more than the simple polynomial as basis function.The change of porous parameter of the barrier and variation of trench width and height significantly contribute to the change in the scattering coefficients and the hydrodynamic force.The present results are likely to play a crucial role in the analysis of surface wave propagation in oceans involving porous barrier over submarine trench.展开更多
The total π-bond energy shows a quantum-chemical characteristic of the conjugated molecules. Based on HMO methods, a lot of people try to search for the simple general formulas of an approximated calculation for a wi...The total π-bond energy shows a quantum-chemical characteristic of the conjugated molecules. Based on HMO methods, a lot of people try to search for the simple general formulas of an approximated calculation for a wide use. So far, a large number of calculation methods have been suggested, but not the best. On展开更多
We have already known that many risk factors have an effect on the spread of the AIDS. A macroscopic analysis is done by the statistical data reported to WHO. To give an approximate formula for calculating cumulative ...We have already known that many risk factors have an effect on the spread of the AIDS. A macroscopic analysis is done by the statistical data reported to WHO. To give an approximate formula for calculating cumulative number of AIDS/HIV will be valuable, by which the general orientation of the AIDS movements can be forecast.展开更多
Various approximate formnlas for calculating the critical depth in trapezoidal channels have been proposed by I. I. Agroskin, I. M. Sharmanovsky, Ding Junsong (丁君松), Huang Kezhong (黄克中), Li Zhongyi (李忠义) et a...Various approximate formnlas for calculating the critical depth in trapezoidal channels have been proposed by I. I. Agroskin, I. M. Sharmanovsky, Ding Junsong (丁君松), Huang Kezhong (黄克中), Li Zhongyi (李忠义) et al. during this decade. But all of these formulas are restricted within certain respects of application.展开更多
In the prospecting and exploiting of oil, to estimate the reserves and boundaries of areservoir has a great significance. Therefore, we propose approximate formulas to estimatethe volume of oil-storing space of a rese...In the prospecting and exploiting of oil, to estimate the reserves and boundaries of areservoir has a great significance. Therefore, we propose approximate formulas to estimatethe volume of oil-storing space of a reservoir.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10271074)
文摘To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.
基金Project supported by the National Natural Science Foundation of China(Grant No.11072242)the Key Scientific Studies Program of Hebei Province Higher Education Institute,China(Grant No.ZD2018301)Cangzhou National Science Foundation,China(Grant No.177000001)
文摘In 1805, Thomas Young was the first to propose an equation(Young's equation) to predict the value of the equilibrium contact angle of a liquid on a solid. On the basis of our predecessors, we further clarify that the contact angle in Young's equation refers to the super-nano contact angle. Whether the equation is applicable to nanoscale systems remains an open question. Zhu et al. [College Phys. 4 7(1985)] obtained the most simple and convenient approximate formula, known as the Zhu–Qian approximate formula of Young's equation. Here, using molecular dynamics simulation, we test its applicability for nanodrops. Molecular dynamics simulations are performed on argon liquid cylinders placed on a solid surface under a temperature of 90 K, using Lennard–Jones potentials for the interaction between liquid molecules and between a liquid molecule and a solid molecule with the variable coefficient of strength a. Eight values of a between 0.650 and 0.825 are used. By comparison of the super-nano contact angles obtained from molecular dynamics simulation and the Zhu–Qian approximate formula of Young's equation, we find that it is qualitatively applicable for nanoscale systems.
文摘There are such problems as convergence and stability of numerical calculations during multivariate interpolation. Moreover, it is very difficult to construct a overall multivariate numerical interpolation formula to ensure convergence for a set of irregular nodes. In this paper by means of an optimal binary interpolation formula given in a reproducing kernel space, a high precision overall two dimension numerical integral formula is established and its advantage is that it ensures the convergence for arbitrary irregular node set in the integral domain.
文摘For the generalized inverse function-valued Pade approximants, its intact computation formulas are given. The explicit determinantal formulas for the denominator scalar polynomials and the numerator function-valued polynomials are first established. A useful existence condition is given by means of determinant form.
文摘The generalized inverse function-valued Padé approximant was defined to solve the integral equations. However, it is difficult to compute the approximants by some high-order determinant formulas. In this paper, to simplify computation of the function-valued Padé approximants, an efficient Pfaffian formula for the determinants was extended from the matrix form to the function-valued form. As an important application, a Pfaffian formula of [4/4] type Padé approximant was established.
基金Supported by the National Natural Science Foundation of China under Grant No 10774062the National Science Fund for Distinguished Young Scholars(No 50925103)the Key Project of the Ministry of Education of China(No 309027).
文摘Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed.Based on an approximation of the elliptic integral,two new logarithmic formulae for large amplitude close to 180° are obtained.Considering the trigonometric function modulation results from the dependence of relative error on the amplitude,we realize accurate approximation period expressions for any amplitude between 0 and 180°.A relative error less than 0.02% is achieved for any amplitude.This kind of modulation is also effective for other large-amplitude logarithmic approximation expressions.
文摘In this article, the objective is to introduce an algorithm to produce the quaternary m-point (for any integer m>1) approximating subdivision schemes, which have smaller support and higher smoothness, comparing to binary and ternary schemes. The proposed algorithm has been derived from uniform B-spline basis function using the Cox-de Boor recursion formula. In order to determine the convergence and smoothness of the proposed schemes, the Laurent polynomial method has been used.
文摘In this paper two sequences of generalized Landau linear positive operators are introduced. They can be applied in approximating continuous functions with arbitrary growth order, defined on a finite interval or the whole real axis. The properties of approximation are studied and their asymptotic formulae are presented. These results show that their degrees of approximation are the best among existing operator sequences of Landau type, for example, their degrees of approximation for C 2[0, 1] are O(1/n 2) but corresponding degree of ordinary Landau operators are only O(1/n).
文摘We suggest that the Lamb shift can be approximated by a very simple function that seems accurate enough for most experimental researchers working with elements where the relativistic effects of the electron are minimal, that is up to element 80 or so. Even if our new approximation does not show anything new in quantum chemistry per se, we think that it can be useful for experimental researchers and students of both quantum physics and chemistry;now everyone can calculate the Lamb shift on the back of an envelope.
文摘The effect of porosity on surface wave scattering by a vertical porous barrier over a rectangular trench is studied here under the assumption of linearized theory of water waves.The fluid region is divided into four subregions depending on the position of the barrier and the trench.Using the Havelock’s expansion of water wave potential in different regions along with suitable matching conditions at the interface of different regions,the problem is formulated in terms of three integral equations.Considering the edge conditions at the submerged end of the barrier and at the edges of the trench,these integral equations are solved using multi-term Galerkin approximation technique taking orthogonal Chebyshev’s polynomials and ultra-spherical Gegenbauer polynomial as its basis function and also simple polynomial as basis function.Using the solutions of the integral equations,the reflection coefficient,transmission coefficient,energy dissipation coefficient and horizontal wave force are determined and depicted graphically.It was observed that the rate of convergence of the Galerkin method in computing the reflection coefficient,considering special functions as basis function is more than the simple polynomial as basis function.The change of porous parameter of the barrier and variation of trench width and height significantly contribute to the change in the scattering coefficients and the hydrodynamic force.The present results are likely to play a crucial role in the analysis of surface wave propagation in oceans involving porous barrier over submarine trench.
文摘The total π-bond energy shows a quantum-chemical characteristic of the conjugated molecules. Based on HMO methods, a lot of people try to search for the simple general formulas of an approximated calculation for a wide use. So far, a large number of calculation methods have been suggested, but not the best. On
文摘We have already known that many risk factors have an effect on the spread of the AIDS. A macroscopic analysis is done by the statistical data reported to WHO. To give an approximate formula for calculating cumulative number of AIDS/HIV will be valuable, by which the general orientation of the AIDS movements can be forecast.
文摘Various approximate formnlas for calculating the critical depth in trapezoidal channels have been proposed by I. I. Agroskin, I. M. Sharmanovsky, Ding Junsong (丁君松), Huang Kezhong (黄克中), Li Zhongyi (李忠义) et al. during this decade. But all of these formulas are restricted within certain respects of application.
基金This project is in part supported by the National Natural Science Foundation of China
文摘In the prospecting and exploiting of oil, to estimate the reserves and boundaries of areservoir has a great significance. Therefore, we propose approximate formulas to estimatethe volume of oil-storing space of a reservoir.