Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave(mmWave)massive multiple-input multiple-output(MIMO)systems.In this paper,Gaussian Mixture lear...Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave(mmWave)massive multiple-input multiple-output(MIMO)systems.In this paper,Gaussian Mixture learned approximate message passing(GM-LAMP)network is presented for the design of optimal hybrid precoders suitable for mmWave Massive MIMO systems.Optimal hybrid precoder designs using a compressive sensing scheme such as orthogonal matching pursuit(OMP)and its derivatives results in high computational complexity when the dimensionality of the sparse signal is high.This drawback can be addressed using classical iterative algorithms such as approximate message passing(AMP),which has comparatively low computational complexity.The drawbacks of AMP algorithm are fixed shrinkage parameter and non-consideration of prior distribution of the hybrid precoders.In this paper,the fixed shrinkage parameter problem of the AMP algorithm is addressed using learned AMP(LAMP)network,and is further enhanced as GMLAMP network using the concept of Gaussian Mixture distribution of the hybrid precoders.The simula-tion results show that the proposed GM-LAMP network achieves optimal hybrid precoder design with enhanced achievable rates,better accuracy and low computational complexity compared to the existing algorithms.展开更多
Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate ...Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate message passing(AMP)based algorithms have been proposed.For SBL,it has accurate performance with robustness while its computational complexity is high due to matrix inversion.For AMP,its performance is guaranteed by the severe restriction of the measurement matrix,which limits its application in solving CS problem.To overcome the drawbacks of the above algorithms,in this paper,we present a low complexity algorithm for the single linear model that incorporates the vector AMP(VAMP)into the SBL structure with expectation maximization(EM).Specifically,we apply the variance auto-tuning into the VAMP to implement the E step in SBL,which decrease the iterations that require to converge compared with VAMP-EM algorithm when using a Gaussian mixture(GM)prior.Simulation results show that the proposed algorithm has better performance with high robustness under various cases of difficult measurement matrices.展开更多
Due to limited volume, weight and power consumption, micro-satellite has to reduce data transmission and storage capacity by image compression when performs earth observation missions. However, the quality of images m...Due to limited volume, weight and power consumption, micro-satellite has to reduce data transmission and storage capacity by image compression when performs earth observation missions. However, the quality of images may be unsatisfied. This paper considers the problem of recovering sparse signals by exploiting their unknown sparsity pattern. To model structured sparsity, the prior correlation of the support is encoded by imposing a transformed Gaussian process on the spike and slab probabilities. Then, an efficient approximate message-passing algorithm with structured spike and slab prior is derived for posterior inference, which, combined with a fast direct method, reduces the computational complexity significantly. Further, a unified scheme is developed to learn the hyperparameters using expectation maximization(EM) and Bethe free energy optimization. Simulation results on both synthetic and real data demonstrate the superiority of the proposed algorithm.展开更多
To overcome the limitations of conventional speech enhancement methods, such as inaccurate voice activity detector(VAD) and noise estimation, a novel speech enhancement algorithm based on the approximate message passi...To overcome the limitations of conventional speech enhancement methods, such as inaccurate voice activity detector(VAD) and noise estimation, a novel speech enhancement algorithm based on the approximate message passing(AMP) is adopted. AMP exploits the difference between speech and noise sparsity to remove or mute the noise from the corrupted speech. The AMP algorithm is adopted to reconstruct the clean speech efficiently for speech enhancement. More specifically, the prior probability distribution of speech sparsity coefficient is characterized by Gaussian-model, and the hyper-parameters of the prior model are excellently learned by expectation maximization(EM) algorithm. We utilize the k-nearest neighbor(k-NN) algorithm to learn the sparsity with the fact that the speech coefficients between adjacent frames are correlated. In addition, computational simulations are used to validate the proposed algorithm, which achieves better speech enhancement performance than other four baseline methods-Wiener filtering, subspace pursuit(SP), distributed sparsity adaptive matching pursuit(DSAMP), and expectation-maximization Gaussian-model approximate message passing(EM-GAMP) under different compression ratios and a wide range of signal to noise ratios(SNRs).展开更多
The orthogonal time frequency space(OTFS)modulation has emerged as a promis⁃ing modulation scheme for wireless communications in high-mobility scenarios.An efficient detector is of paramount importance to harvesting t...The orthogonal time frequency space(OTFS)modulation has emerged as a promis⁃ing modulation scheme for wireless communications in high-mobility scenarios.An efficient detector is of paramount importance to harvesting the time and frequency diversities promised by OTFS.Recently,some message passing based detectors have been developed by exploiting the features of the OTFS channel matrices.In this paper,we provide an overview of some re⁃cent message passing based OTFS detectors,compare their performance,and shed some light on potential research on the design of message passing based OTFS receivers.展开更多
When estimating the direction of arrival (DOA) of wideband signals from multiple sources, the performance of sparse Bayesian methods is influenced by the frequency bands occupied by signals in different directions. Th...When estimating the direction of arrival (DOA) of wideband signals from multiple sources, the performance of sparse Bayesian methods is influenced by the frequency bands occupied by signals in different directions. This is particularly true when multiple signal frequency bands overlap. Message passing algorithms (MPA) with Dirichlet process (DP) prior can be employed in a sparse Bayesian learning (SBL) framework with high precision. However, existing methods suffer from either high complexity or low precision. To address this, we propose a low-complexity DOA estimation algorithm based on a factor graph. This approach introduces two strong constraints via a stretching transformation of the factor graph. The first constraint separates the observation from the DP prior, enabling the application of the unitary approximate message passing (UAMP) algorithm for simplified inference and mitigation of divergence issues. The second constraint compensates for the deviation in estimation angle caused by the grid mismatch problem. Compared to state-of-the-art algorithms, our proposed method offers higher estimation accuracy and lower complexity.展开更多
Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular net...Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing(UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model(HMM). The empirical state evolution(SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm,we derive the update criterion for the hyperparameters through the expectation-maximization(EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.展开更多
Low-complexity detectors play an essential role in massive multiple-input multiple-output (MIMO) transmissions. In this work, we discuss the perspectives of utilizing approximate message passing (AMP) algorithm to the...Low-complexity detectors play an essential role in massive multiple-input multiple-output (MIMO) transmissions. In this work, we discuss the perspectives of utilizing approximate message passing (AMP) algorithm to the detection of massive MIMO transmission. To this end, we need to efficiently reduce the divergence occurrence in AMP iterations and bridge the performance gap that AMP has from the optimum detector while making use of its advantage of low computational load. Our solution is to build a neural network to learn and optimize AMP detection with four groups of specifically designed learnable coefficients such that divergence rate and detection mean squared error (MSE) can be significantly reduced. Moreover, the proposed deep learning-based AMP has a much faster converging rate, and thus a much lower computational complexity than conventional AMP, providing an alternative solution for the massive MIMO detection. Extensive simulation experiments are provided to validate the advantages of the proposed deep learning-based AMP.展开更多
Orthogonal time frequency space(OTFS)technique,which modulates data symbols in the delay-Doppler(DD)domain,presents a potential solution for supporting reliable information transmission in highmobility vehicular netwo...Orthogonal time frequency space(OTFS)technique,which modulates data symbols in the delay-Doppler(DD)domain,presents a potential solution for supporting reliable information transmission in highmobility vehicular networks.In this paper,we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler.We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing(UAMP),which exploits the structured sparsity of the effective DD domain channel using hidden Markov model(HMM).The empirical state evolution(SE)analysis is then leveraged to predict the performance of our proposed algorithm.To refine the hyperparameters in the proposed algorithm,we derive the update criterion for the hyperparameters through the expectation-maximization(EM)algorithm.Finally,Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.展开更多
The uplink of mobile satellite communication(MSC) system with hundreds of spot beams is essentially a multiple-input multiple-output(MIMO) channel. Dual-turbo iterative detection and decoding as a kind of MIMO receive...The uplink of mobile satellite communication(MSC) system with hundreds of spot beams is essentially a multiple-input multiple-output(MIMO) channel. Dual-turbo iterative detection and decoding as a kind of MIMO receiver, which exchanges soft extrinsic information between a soft-in soft-out(SISO) detector and an SISO decoder in an iterative fashion, is an efficient method to reduce the uplink inter-beam-interference(IBI),and so the receiving bit error rate(BER).We propose to replace the linear SISO detector of traditional dual-turbo iterative detection and decoding with the AMP detector for the low-density parity-check(LDPC) coded multibeam MSC uplink. This improvement can reduce the computational complexity and achieve much lower BER.展开更多
文摘Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave(mmWave)massive multiple-input multiple-output(MIMO)systems.In this paper,Gaussian Mixture learned approximate message passing(GM-LAMP)network is presented for the design of optimal hybrid precoders suitable for mmWave Massive MIMO systems.Optimal hybrid precoder designs using a compressive sensing scheme such as orthogonal matching pursuit(OMP)and its derivatives results in high computational complexity when the dimensionality of the sparse signal is high.This drawback can be addressed using classical iterative algorithms such as approximate message passing(AMP),which has comparatively low computational complexity.The drawbacks of AMP algorithm are fixed shrinkage parameter and non-consideration of prior distribution of the hybrid precoders.In this paper,the fixed shrinkage parameter problem of the AMP algorithm is addressed using learned AMP(LAMP)network,and is further enhanced as GMLAMP network using the concept of Gaussian Mixture distribution of the hybrid precoders.The simula-tion results show that the proposed GM-LAMP network achieves optimal hybrid precoder design with enhanced achievable rates,better accuracy and low computational complexity compared to the existing algorithms.
基金supported by NSFC projects(61960206005,61803211,61871111,62101275,62171127,61971136,and 62001056)Jiangsu NSF project(BK20200820)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX210106)Research Fund of National Mobile Communications Research Laboratory.
文摘Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate message passing(AMP)based algorithms have been proposed.For SBL,it has accurate performance with robustness while its computational complexity is high due to matrix inversion.For AMP,its performance is guaranteed by the severe restriction of the measurement matrix,which limits its application in solving CS problem.To overcome the drawbacks of the above algorithms,in this paper,we present a low complexity algorithm for the single linear model that incorporates the vector AMP(VAMP)into the SBL structure with expectation maximization(EM).Specifically,we apply the variance auto-tuning into the VAMP to implement the E step in SBL,which decrease the iterations that require to converge compared with VAMP-EM algorithm when using a Gaussian mixture(GM)prior.Simulation results show that the proposed algorithm has better performance with high robustness under various cases of difficult measurement matrices.
基金partially supported by the National Nature Science Foundation of China(Grant No.91438206 and 91638205)supported by Zhejiang Province Natural Science Foundation of China(Grant No.LQ18F010001)
文摘Due to limited volume, weight and power consumption, micro-satellite has to reduce data transmission and storage capacity by image compression when performs earth observation missions. However, the quality of images may be unsatisfied. This paper considers the problem of recovering sparse signals by exploiting their unknown sparsity pattern. To model structured sparsity, the prior correlation of the support is encoded by imposing a transformed Gaussian process on the spike and slab probabilities. Then, an efficient approximate message-passing algorithm with structured spike and slab prior is derived for posterior inference, which, combined with a fast direct method, reduces the computational complexity significantly. Further, a unified scheme is developed to learn the hyperparameters using expectation maximization(EM) and Bethe free energy optimization. Simulation results on both synthetic and real data demonstrate the superiority of the proposed algorithm.
基金supported by National Natural Science Foundation of China(NSFC)(No.61671075)Major Program of National Natural Science Foundation of China(No.61631003)。
文摘To overcome the limitations of conventional speech enhancement methods, such as inaccurate voice activity detector(VAD) and noise estimation, a novel speech enhancement algorithm based on the approximate message passing(AMP) is adopted. AMP exploits the difference between speech and noise sparsity to remove or mute the noise from the corrupted speech. The AMP algorithm is adopted to reconstruct the clean speech efficiently for speech enhancement. More specifically, the prior probability distribution of speech sparsity coefficient is characterized by Gaussian-model, and the hyper-parameters of the prior model are excellently learned by expectation maximization(EM) algorithm. We utilize the k-nearest neighbor(k-NN) algorithm to learn the sparsity with the fact that the speech coefficients between adjacent frames are correlated. In addition, computational simulations are used to validate the proposed algorithm, which achieves better speech enhancement performance than other four baseline methods-Wiener filtering, subspace pursuit(SP), distributed sparsity adaptive matching pursuit(DSAMP), and expectation-maximization Gaussian-model approximate message passing(EM-GAMP) under different compression ratios and a wide range of signal to noise ratios(SNRs).
基金supported by the National Natural Science Foundation of Chi⁃na(61901417,U1804152,61801434)Science and Technology Re⁃search Project of Henan Province(212102210556,212102210566,212400410179).
文摘The orthogonal time frequency space(OTFS)modulation has emerged as a promis⁃ing modulation scheme for wireless communications in high-mobility scenarios.An efficient detector is of paramount importance to harvesting the time and frequency diversities promised by OTFS.Recently,some message passing based detectors have been developed by exploiting the features of the OTFS channel matrices.In this paper,we provide an overview of some re⁃cent message passing based OTFS detectors,compare their performance,and shed some light on potential research on the design of message passing based OTFS receivers.
基金supported in part by the National Natural Science Foundation of China(Nos.6202780103 and 62033001)the Innovation Key Project of Guangxi Province(No.AA22068059)+2 种基金the Key Research and Development Program of Guilin(No.2020010332)the Natural Science Foundation of Henan Province(No.222300420504)Academic Degrees and Graduate Education Reform Project of Henan Province(No.2021SJGLX262Y).
文摘When estimating the direction of arrival (DOA) of wideband signals from multiple sources, the performance of sparse Bayesian methods is influenced by the frequency bands occupied by signals in different directions. This is particularly true when multiple signal frequency bands overlap. Message passing algorithms (MPA) with Dirichlet process (DP) prior can be employed in a sparse Bayesian learning (SBL) framework with high precision. However, existing methods suffer from either high complexity or low precision. To address this, we propose a low-complexity DOA estimation algorithm based on a factor graph. This approach introduces two strong constraints via a stretching transformation of the factor graph. The first constraint separates the observation from the DP prior, enabling the application of the unitary approximate message passing (UAMP) algorithm for simplified inference and mitigation of divergence issues. The second constraint compensates for the deviation in estimation angle caused by the grid mismatch problem. Compared to state-of-the-art algorithms, our proposed method offers higher estimation accuracy and lower complexity.
基金supported by the Key Scientific Research Project in Colleges and Universities of Henan Province of China(Grant Nos.21A510003)Science and the Key Science and Technology Research Project of Henan Province of China(Grant Nos.222102210053)。
文摘Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing(UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model(HMM). The empirical state evolution(SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm,we derive the update criterion for the hyperparameters through the expectation-maximization(EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.
基金supported by the National Natural Science Foundation of China under Grants 61801523, 61971452, and 91538203
文摘Low-complexity detectors play an essential role in massive multiple-input multiple-output (MIMO) transmissions. In this work, we discuss the perspectives of utilizing approximate message passing (AMP) algorithm to the detection of massive MIMO transmission. To this end, we need to efficiently reduce the divergence occurrence in AMP iterations and bridge the performance gap that AMP has from the optimum detector while making use of its advantage of low computational load. Our solution is to build a neural network to learn and optimize AMP detection with four groups of specifically designed learnable coefficients such that divergence rate and detection mean squared error (MSE) can be significantly reduced. Moreover, the proposed deep learning-based AMP has a much faster converging rate, and thus a much lower computational complexity than conventional AMP, providing an alternative solution for the massive MIMO detection. Extensive simulation experiments are provided to validate the advantages of the proposed deep learning-based AMP.
基金supported by the Key Scientific Research Project in Colleges and Universities of Henan Province of China(Grant Nos.21A510003)Science and the Key Science and Technology Research Project of Henan Province of China(Grant Nos.222102210053).
文摘Orthogonal time frequency space(OTFS)technique,which modulates data symbols in the delay-Doppler(DD)domain,presents a potential solution for supporting reliable information transmission in highmobility vehicular networks.In this paper,we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler.We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing(UAMP),which exploits the structured sparsity of the effective DD domain channel using hidden Markov model(HMM).The empirical state evolution(SE)analysis is then leveraged to predict the performance of our proposed algorithm.To refine the hyperparameters in the proposed algorithm,we derive the update criterion for the hyperparameters through the expectation-maximization(EM)algorithm.Finally,Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.
基金supported by the National Natural Science Foundation of China under Grants 61320106003 and 61401095the Civil Aerospace Technologies Research Project under Grant D010109The Fundamental Research Funds for the Central Universities under Grant YZZ17009
文摘The uplink of mobile satellite communication(MSC) system with hundreds of spot beams is essentially a multiple-input multiple-output(MIMO) channel. Dual-turbo iterative detection and decoding as a kind of MIMO receiver, which exchanges soft extrinsic information between a soft-in soft-out(SISO) detector and an SISO decoder in an iterative fashion, is an efficient method to reduce the uplink inter-beam-interference(IBI),and so the receiving bit error rate(BER).We propose to replace the linear SISO detector of traditional dual-turbo iterative detection and decoding with the AMP detector for the low-density parity-check(LDPC) coded multibeam MSC uplink. This improvement can reduce the computational complexity and achieve much lower BER.