In this article,we developed sufficient conditions for the existence and uniqueness of an approximate solution to a nonlinear system of Lorenz equations under Caputo-Fabrizio fractional order derivative(CFFD).The requ...In this article,we developed sufficient conditions for the existence and uniqueness of an approximate solution to a nonlinear system of Lorenz equations under Caputo-Fabrizio fractional order derivative(CFFD).The required results about the existence and uniqueness of a solution are derived via the fixed point approach due to Banach and Krassnoselskii.Also,we enriched our work by establishing a stable result based on the Ulam-Hyers(U-H)concept.Also,the approximate solution is computed by using a hybrid method due to the Laplace transform and the Adomian decomposition method.We computed a few terms of the required solution through the mentioned method and presented some graphical presentation of the considered problem corresponding to various fractional orders.The results of the existence and uniqueness tests for the Lorenz system under CFFD have not been studied earlier.Also,the suggested method results for the proposed system under the mentioned derivative are new.Furthermore,the adopted technique has some useful features,such as the lack of prior discrimination required by wavelet methods.our proposed method does not depend on auxiliary parameters like the homotopy method,which controls the method.Our proposed method is rapidly convergent and,in most cases,it has been used as a powerful technique to compute approximate solutions for various nonlinear problems.展开更多
Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux ...Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux vector. The proofs are based on deriving localization principles for H-measures associated to sequences of measurevalued functions. This main result implies existence of solutions to degenerate parabolic convection-diffusion equations with discontinuous flux. Moreover, it provides a framework in which one can prove convergence of various types of approximate solutions, such as those generated by the vanishing viscosity method and numerical schemes.展开更多
The bounds on the discrepancy of approximate solutions constructed by Gedunov's scheme to IVP of isentropic equations of gas dynamics are obtained, Three well-knowu results obtained by Lax for shock waves with sma...The bounds on the discrepancy of approximate solutions constructed by Gedunov's scheme to IVP of isentropic equations of gas dynamics are obtained, Three well-knowu results obtained by Lax for shock waves with small jumps for general quasilinear hyperbolic systems of conservation laws are extended to shock waves for isentropic equations of gas dynamics in a bounded invariant region with ρ=0 as one of boundries of the region. Two counterexamples are given to show that two iuequalities given by Godunov do not hold for all rational numbers γ∈(1, 3]. It seems that the approach by Godunov to obtain the forementioned bounds may not be possible.展开更多
This paper gives four pairs of entropies (η_i, q_i) (i=1, 2, 3, 4) to the isentropic gas dynamics equations ρ_t+(ρu)_x=0 (ρu)_t+(ρu^2+p(ρ))_x=0 p(ρ)=k^2ρ~γ,1<γ<3。 when all the function equations are s...This paper gives four pairs of entropies (η_i, q_i) (i=1, 2, 3, 4) to the isentropic gas dynamics equations ρ_t+(ρu)_x=0 (ρu)_t+(ρu^2+p(ρ))_x=0 p(ρ)=k^2ρ~γ,1<γ<3。 when all the function equations are satisfied展开更多
The Alekseevskii–Tate model is the most successful semi-hydrodynamic model applied to long-rod penetration into semi-infinite targets. However, due to the nonlinear nature of the equations, the rod(tail) velocity, pe...The Alekseevskii–Tate model is the most successful semi-hydrodynamic model applied to long-rod penetration into semi-infinite targets. However, due to the nonlinear nature of the equations, the rod(tail) velocity, penetration velocity, rod length, and penetration depth were obtained implicitly as a function of time and solved numerically By employing a linear approximation to the logarithmic relative rod length, we obtain two sets of explicit approximate algebraic solutions based on the implicit theoretica solution deduced from primitive equations. It is very convenient in the theoretical prediction of the Alekseevskii–Tate model to apply these simple algebraic solutions. In particular, approximate solution 1 shows good agreement with the theoretical(exact) solution, and the first-order perturbation solution obtained by Walters et al.(Int. J. Impac Eng. 33:837–846, 2006) can be deemed as a special form of approximate solution 1 in high-speed penetration. Meanwhile, with constant tail velocity and penetration velocity approximate solution 2 has very simple expressions, which is applicable for the qualitative analysis of long-rod penetration. Differences among these two approximate solutions and the theoretical(exact) solution and their respective scopes of application have been discussed, and the inferences with clear physical basis have been drawn. In addition, these two solutions and the first-order perturbation solution are applied to two cases with different initial impact velocity and different penetrator/target combinations to compare with the theoretical(exact) solution. Approximate solution 1 is much closer to the theoretical solution of the Alekseevskii–Tate model than the first-order perturbation solution in both cases, whilst approximate solution 2 brings us a more intuitive understanding of quasi-steady-state penetration.展开更多
This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admi...This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admit certain types of AGCSs is derived. Some approximate invariant solutions to the resulting equations can also be obtained.展开更多
A complete approximate symmetry classification of a class of perturbed nonlinear wave equations isperformed using the method originated from Fushchich and Shtelen.Moreover,large classes of approximate invariantsolutio...A complete approximate symmetry classification of a class of perturbed nonlinear wave equations isperformed using the method originated from Fushchich and Shtelen.Moreover,large classes of approximate invariantsolutions of the equations based on the Lie group method are constructed.展开更多
By applying Lou's direct perturbation method to perturbed nonlinear Schroedinger equation and the critical nonlinear SchrSdinger equation with a small dispersion, their approximate analytical solutions including the ...By applying Lou's direct perturbation method to perturbed nonlinear Schroedinger equation and the critical nonlinear SchrSdinger equation with a small dispersion, their approximate analytical solutions including the zero-order and the first-order solutions are obtained. Based on these approximate solutions, the analytical forms of parameters of solitons are expressed and the effects of perturbations on solitons are briefly analyzed at the same time. In addition, the perturbed nonlinear Schroedinger equations is directly simulated by split-step Fourier method to check the validity of the direct perturbation method. It turns out that the analytical results given by the direct perturbation method are well supported by numerical calculations.展开更多
It is difficult to obtain exact solutions of the nonlinear partial differential equations (PDEs) due to their complexity and nonlinearity, especially for non-integrable systems. In this paper, some reasonable approx...It is difficult to obtain exact solutions of the nonlinear partial differential equations (PDEs) due to their complexity and nonlinearity, especially for non-integrable systems. In this paper, some reasonable approximations of real physics are considered, and the invariant expansion is proposed to solve real nonlinear systems. A simple invariant expansion with quite a universal pseudopotential is used for some nonlinear PDEs such as the Korteweg-de Vries (KdV) equation with a fifth-order dispersion term, the perturbed fourth-order KdV equation, the KdV-Burgers equation, and a Boussinesq-type equation.展开更多
In this paper, the method proposed recently by the author for the solution of probability density function (PDF) of nonlinear stochastic systems is presented in detail and extended for more general problems of stochas...In this paper, the method proposed recently by the author for the solution of probability density function (PDF) of nonlinear stochastic systems is presented in detail and extended for more general problems of stochastic differential equations (SDE), therefore the Fokker Planck Kolmogorov (FPK) equation is expressed in general form with no limitation on the degree of nonlinearity of the SDE, the type of δ correlated excitations, the existence of multiplicative excitations, and the dimension of SDE or FPK equation. Examples are given and numerical results are provided for comparing with known exact solution to show the effectiveness of the method.展开更多
We consider Einstein-Weyl gravity with a minimally coupled scalar field in four dimensional spacetime.Using the minimal geometric deformation(MGD)approach,we split the highly nonlinear coupled field equations into two...We consider Einstein-Weyl gravity with a minimally coupled scalar field in four dimensional spacetime.Using the minimal geometric deformation(MGD)approach,we split the highly nonlinear coupled field equations into two subsystems that describe the background geometry and scalar field source,respectively.By considering the Schwarzschild-AdS metric as background geometry,we derive analytical approximate solutions of the scalar field and deformation metric functions using the homotopy analysis method(HAM),providing their analytical approximations to fourth order.Moreover,we discuss the accuracy of the analytical approximations,showing they are sufficiently accurate throughout the exterior spacetime.展开更多
In this paper,we study optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems.Three new classes of functions,namelyε-pseudoconvex functions of type I and type II andε-quasico...In this paper,we study optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems.Three new classes of functions,namelyε-pseudoconvex functions of type I and type II andε-quasiconvex functions are introduced,respectively.By utilizing these new concepts,sufficient optimality conditions of approximate solutions for the nonsmooth semi-infinite programming problem are established.Some examples are also presented.The results obtained in this paper improve the corresponding results of Son et al.(J Optim Theory Appl 141:389–409,2009).展开更多
Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Schr6dinger equation of D-dimensional Hulthen potential is transformed to a hypergeometric d...Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Schr6dinger equation of D-dimensional Hulthen potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of scattering states are attained. The normalized wave functions expressed in terms of hypergeometrie functions of scattering states on the "k/2π scale" and the calculation formula of phase shifts are given. The physical meaning of the approximate analytical solutions is discussed.展开更多
Two approximate analytical relativistic solutions for one-dimensional, space-charge- limited cylindrical coaxial diode are derived and utilized to compose best-fitting approximate solutions. Comparison of the best-fit...Two approximate analytical relativistic solutions for one-dimensional, space-charge- limited cylindrical coaxial diode are derived and utilized to compose best-fitting approximate solutions. Comparison of the best-fitting solutions with the numerical one demonstrates an error of about 11% for cathode-inside arrangement and 12% in the cathode-outside case for ratios of larger to smaller electrode radius from 1.2 to 10 and a voltage above 0.5 MV up to 5 MV. With these solutions the diode lengths for critical self-magnetic bending and for the condition under which the parapotential model validates are calculated to be longer than 1 cm up to more than 100 cm depending on voltage, radial dimensions and electrode arrangement. The influence of ion flow from the anode on the relativistic electron-only solution is numerically computed, indicating an enhancement factor of total diode current of 1.85 to 4.19 related to voltage, radial dimension and electrode arrangement.展开更多
This paper is addressed to develop an approximate method to solve a class of infinite dimensional LQ optimal regulator problems over infinite time horizon. Our algorithm is based on a construction of approximate solut...This paper is addressed to develop an approximate method to solve a class of infinite dimensional LQ optimal regulator problems over infinite time horizon. Our algorithm is based on a construction of approximate solutions which solve some finite dimensional LQ optimal regulator problems over finite time horizon, and it is shown that these approximate solutions converge strongly to the desired solution in the double limit sense.展开更多
By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Ko...By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations are dealt analytically and approximate solutions are derived. The results show that the employed approach is a promising tool for solving many nonlinear fractional partial differential equations. The algorithm described in this work is expected to be employed to solve more problems in fractional calculus.展开更多
This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV)...This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV) equation. This method provides a sequence Of functions which converges to the exact solution of the problem and is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Some examples are given to demonstrate the reliability and convenience of the method and comparisons are made with the exact solutions.展开更多
In this paper, a new kind of iteration technique for solving nonlinear ordinary differential equations is described and used to give approximate periodic solutions for some well-known nonlinear problems. The most inte...In this paper, a new kind of iteration technique for solving nonlinear ordinary differential equations is described and used to give approximate periodic solutions for some well-known nonlinear problems. The most interesting features of the proposed methods are its extreme simplicity and concise forms of iteration formula for a wide range of nonlinear problems.展开更多
In this paper, the approximate analytical solutions of the fractional coupled mKdV equation are obtained by homotopy analysis method (HAM). The method includes an auxiliary parameter which provides a convenient way of...In this paper, the approximate analytical solutions of the fractional coupled mKdV equation are obtained by homotopy analysis method (HAM). The method includes an auxiliary parameter which provides a convenient way of adjusting and controlling the convergence region of the series solution. The suitable value of auxiliary parameter is determined and the obtained results are presented graphically.展开更多
This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to st...This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to stochastic delay differential equations. Based on the Caratheodory approximate procedure, it was proved that stochastic delay differential equations have unique solution and established that the Caratheodory approximate solution converges to the unique solution of stochastic delay differential equations under the Cauchy sequence and initial condition. This Caratheodory approximate procedure and Euler method both converge at the same rate. This is achieved by replacing the present state with past state. The existence and uniqueness of an approximate solution of the stochastic delay differential equation were shown and the approximate solution to the unique solution was also shown. .展开更多
基金support of Taif University Researchers Supporting Project No. (TURSP-2020/162),Taif University,Taif,Saudi Arabiafunding this work through research groups program under Grant No.R.G.P.1/195/42.
文摘In this article,we developed sufficient conditions for the existence and uniqueness of an approximate solution to a nonlinear system of Lorenz equations under Caputo-Fabrizio fractional order derivative(CFFD).The required results about the existence and uniqueness of a solution are derived via the fixed point approach due to Banach and Krassnoselskii.Also,we enriched our work by establishing a stable result based on the Ulam-Hyers(U-H)concept.Also,the approximate solution is computed by using a hybrid method due to the Laplace transform and the Adomian decomposition method.We computed a few terms of the required solution through the mentioned method and presented some graphical presentation of the considered problem corresponding to various fractional orders.The results of the existence and uniqueness tests for the Lorenz system under CFFD have not been studied earlier.Also,the suggested method results for the proposed system under the mentioned derivative are new.Furthermore,the adopted technique has some useful features,such as the lack of prior discrimination required by wavelet methods.our proposed method does not depend on auxiliary parameters like the homotopy method,which controls the method.Our proposed method is rapidly convergent and,in most cases,it has been used as a powerful technique to compute approximate solutions for various nonlinear problems.
基金supported by the Research Council of Norway through theprojects Nonlinear Problems in Mathematical Analysis Waves In Fluids and Solids+2 种基金 Outstanding Young Inves-tigators Award (KHK), the Russian Foundation for Basic Research (grant No. 09-01-00490-a) DFGproject No. 436 RUS 113/895/0-1 (EYuP)
文摘Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux vector. The proofs are based on deriving localization principles for H-measures associated to sequences of measurevalued functions. This main result implies existence of solutions to degenerate parabolic convection-diffusion equations with discontinuous flux. Moreover, it provides a framework in which one can prove convergence of various types of approximate solutions, such as those generated by the vanishing viscosity method and numerical schemes.
基金Project supported by National Natural Science Foundation of China.
文摘The bounds on the discrepancy of approximate solutions constructed by Gedunov's scheme to IVP of isentropic equations of gas dynamics are obtained, Three well-knowu results obtained by Lax for shock waves with small jumps for general quasilinear hyperbolic systems of conservation laws are extended to shock waves for isentropic equations of gas dynamics in a bounded invariant region with ρ=0 as one of boundries of the region. Two counterexamples are given to show that two iuequalities given by Godunov do not hold for all rational numbers γ∈(1, 3]. It seems that the approach by Godunov to obtain the forementioned bounds may not be possible.
文摘This paper gives four pairs of entropies (η_i, q_i) (i=1, 2, 3, 4) to the isentropic gas dynamics equations ρ_t+(ρu)_x=0 (ρu)_t+(ρu^2+p(ρ))_x=0 p(ρ)=k^2ρ~γ,1<γ<3。 when all the function equations are satisfied
基金supported by the National Outstanding Young Scientist Foundation of China (Grant 11225213)the Key Subject "Computational Solid Mechanics" of China Academy of Engineering Physics
文摘The Alekseevskii–Tate model is the most successful semi-hydrodynamic model applied to long-rod penetration into semi-infinite targets. However, due to the nonlinear nature of the equations, the rod(tail) velocity, penetration velocity, rod length, and penetration depth were obtained implicitly as a function of time and solved numerically By employing a linear approximation to the logarithmic relative rod length, we obtain two sets of explicit approximate algebraic solutions based on the implicit theoretica solution deduced from primitive equations. It is very convenient in the theoretical prediction of the Alekseevskii–Tate model to apply these simple algebraic solutions. In particular, approximate solution 1 shows good agreement with the theoretical(exact) solution, and the first-order perturbation solution obtained by Walters et al.(Int. J. Impac Eng. 33:837–846, 2006) can be deemed as a special form of approximate solution 1 in high-speed penetration. Meanwhile, with constant tail velocity and penetration velocity approximate solution 2 has very simple expressions, which is applicable for the qualitative analysis of long-rod penetration. Differences among these two approximate solutions and the theoretical(exact) solution and their respective scopes of application have been discussed, and the inferences with clear physical basis have been drawn. In addition, these two solutions and the first-order perturbation solution are applied to two cases with different initial impact velocity and different penetrator/target combinations to compare with the theoretical(exact) solution. Approximate solution 1 is much closer to the theoretical solution of the Alekseevskii–Tate model than the first-order perturbation solution in both cases, whilst approximate solution 2 brings us a more intuitive understanding of quasi-steady-state penetration.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10371098 and 10447007the Natural Science Foundation of Shanxi Province of China under Grant No.2005A13
文摘This paper studies the perturbed nonlinear diffusion-convection equation with source term via the approximate generalized conditional symmetry (A GCS). Complete classification of those perturbed equations which admit certain types of AGCSs is derived. Some approximate invariant solutions to the resulting equations can also be obtained.
文摘A complete approximate symmetry classification of a class of perturbed nonlinear wave equations isperformed using the method originated from Fushchich and Shtelen.Moreover,large classes of approximate invariantsolutions of the equations based on the Lie group method are constructed.
基金The project supported by National Natural Science Foundation of China under Grant No. 10575087 and the Natural Science Foundation of Zhejiang Province of China under Grant No. 102053
文摘By applying Lou's direct perturbation method to perturbed nonlinear Schroedinger equation and the critical nonlinear SchrSdinger equation with a small dispersion, their approximate analytical solutions including the zero-order and the first-order solutions are obtained. Based on these approximate solutions, the analytical forms of parameters of solitons are expressed and the effects of perturbations on solitons are briefly analyzed at the same time. In addition, the perturbed nonlinear Schroedinger equations is directly simulated by split-step Fourier method to check the validity of the direct perturbation method. It turns out that the analytical results given by the direct perturbation method are well supported by numerical calculations.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175092)Scientific Research Fund of Zhejiang Provincial Education Department(Grant No.Y201017148)K.C.Wong Magna Fund in Ningbo University
文摘It is difficult to obtain exact solutions of the nonlinear partial differential equations (PDEs) due to their complexity and nonlinearity, especially for non-integrable systems. In this paper, some reasonable approximations of real physics are considered, and the invariant expansion is proposed to solve real nonlinear systems. A simple invariant expansion with quite a universal pseudopotential is used for some nonlinear PDEs such as the Korteweg-de Vries (KdV) equation with a fifth-order dispersion term, the perturbed fourth-order KdV equation, the KdV-Burgers equation, and a Boussinesq-type equation.
文摘In this paper, the method proposed recently by the author for the solution of probability density function (PDF) of nonlinear stochastic systems is presented in detail and extended for more general problems of stochastic differential equations (SDE), therefore the Fokker Planck Kolmogorov (FPK) equation is expressed in general form with no limitation on the degree of nonlinearity of the SDE, the type of δ correlated excitations, the existence of multiplicative excitations, and the dimension of SDE or FPK equation. Examples are given and numerical results are provided for comparing with known exact solution to show the effectiveness of the method.
基金supported by the Natural Science Basic Research Program of Shaanxi,China (2023-JC-QN-0053)supported by the Natural Science Foundation of China (12365009)the Natural Science Foundation of Jiangxi Province,China (20232BAB201039)
文摘We consider Einstein-Weyl gravity with a minimally coupled scalar field in four dimensional spacetime.Using the minimal geometric deformation(MGD)approach,we split the highly nonlinear coupled field equations into two subsystems that describe the background geometry and scalar field source,respectively.By considering the Schwarzschild-AdS metric as background geometry,we derive analytical approximate solutions of the scalar field and deformation metric functions using the homotopy analysis method(HAM),providing their analytical approximations to fourth order.Moreover,we discuss the accuracy of the analytical approximations,showing they are sufficiently accurate throughout the exterior spacetime.
基金This work was partially supported by the National Natural Science Foundation of China(Nos.11471059 and 11671282)the Chongqing Research Program of Basic Research and Frontier Technology(Nos.cstc2014jcyjA00037,cstc2015jcyjB00001 and cstc2014jcyjA00033)+2 种基金the Education Committee Project Research Foundation of Chongqing(Nos.KJ1400618 and KJ1400630)the Program for University Innovation Team of Chongqing(No.CXTDX201601026)the Education Committee Project Foundation of Bayu Scholar.
文摘In this paper,we study optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems.Three new classes of functions,namelyε-pseudoconvex functions of type I and type II andε-quasiconvex functions are introduced,respectively.By utilizing these new concepts,sufficient optimality conditions of approximate solutions for the nonsmooth semi-infinite programming problem are established.Some examples are also presented.The results obtained in this paper improve the corresponding results of Son et al.(J Optim Theory Appl 141:389–409,2009).
基金*Supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK2010291, the Professor and Doctor Foundation of Yancheng Teachers University under Grant No. 07YSYJB0203
文摘Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Schr6dinger equation of D-dimensional Hulthen potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of scattering states are attained. The normalized wave functions expressed in terms of hypergeometrie functions of scattering states on the "k/2π scale" and the calculation formula of phase shifts are given. The physical meaning of the approximate analytical solutions is discussed.
文摘Two approximate analytical relativistic solutions for one-dimensional, space-charge- limited cylindrical coaxial diode are derived and utilized to compose best-fitting approximate solutions. Comparison of the best-fitting solutions with the numerical one demonstrates an error of about 11% for cathode-inside arrangement and 12% in the cathode-outside case for ratios of larger to smaller electrode radius from 1.2 to 10 and a voltage above 0.5 MV up to 5 MV. With these solutions the diode lengths for critical self-magnetic bending and for the condition under which the parapotential model validates are calculated to be longer than 1 cm up to more than 100 cm depending on voltage, radial dimensions and electrode arrangement. The influence of ion flow from the anode on the relativistic electron-only solution is numerically computed, indicating an enhancement factor of total diode current of 1.85 to 4.19 related to voltage, radial dimension and electrode arrangement.
基金This work was partially supported by the National Natural Science Foundation of China(Grant Nos.10171059,10371084&10525105)the National Natural Science Foundation of Spain(Grant No.MTM2005-00714)+1 种基金the Program for New Century Excellent Talents in University of China(Grant No.NCET-04-0882)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant Nos.200119&200218).
文摘This paper is addressed to develop an approximate method to solve a class of infinite dimensional LQ optimal regulator problems over infinite time horizon. Our algorithm is based on a construction of approximate solutions which solve some finite dimensional LQ optimal regulator problems over finite time horizon, and it is shown that these approximate solutions converge strongly to the desired solution in the double limit sense.
基金Supported by National Natural Science Foundation of China under Grant No.71171035
文摘By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations are dealt analytically and approximate solutions are derived. The results show that the employed approach is a promising tool for solving many nonlinear fractional partial differential equations. The algorithm described in this work is expected to be employed to solve more problems in fractional calculus.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10771019 and 10826107)
文摘This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV) equation. This method provides a sequence Of functions which converges to the exact solution of the problem and is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Some examples are given to demonstrate the reliability and convenience of the method and comparisons are made with the exact solutions.
文摘In this paper, a new kind of iteration technique for solving nonlinear ordinary differential equations is described and used to give approximate periodic solutions for some well-known nonlinear problems. The most interesting features of the proposed methods are its extreme simplicity and concise forms of iteration formula for a wide range of nonlinear problems.
文摘In this paper, the approximate analytical solutions of the fractional coupled mKdV equation are obtained by homotopy analysis method (HAM). The method includes an auxiliary parameter which provides a convenient way of adjusting and controlling the convergence region of the series solution. The suitable value of auxiliary parameter is determined and the obtained results are presented graphically.
文摘This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to stochastic delay differential equations. Based on the Caratheodory approximate procedure, it was proved that stochastic delay differential equations have unique solution and established that the Caratheodory approximate solution converges to the unique solution of stochastic delay differential equations under the Cauchy sequence and initial condition. This Caratheodory approximate procedure and Euler method both converge at the same rate. This is achieved by replacing the present state with past state. The existence and uniqueness of an approximate solution of the stochastic delay differential equation were shown and the approximate solution to the unique solution was also shown. .