In this paper we establish a result about uniformly equivalent norms and the convergence of best approximant pairs on the unitary ball for a family of weighted Luxemburg norms with normalized weight functions dependin...In this paper we establish a result about uniformly equivalent norms and the convergence of best approximant pairs on the unitary ball for a family of weighted Luxemburg norms with normalized weight functions depending on ε, when ε→ 0. It is introduced a general concept of Pade approximant and we study its relation with the best local quasi-rational approximant. We characterize the limit of the error for polynomial approximation. We also obtain a new condition over a weight function in order to obtain inequalities in Lp norm, which play an important role in problems of weighted best local Lp approximation in several variables.展开更多
This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation p...This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk.展开更多
The best approximation, best Σ approximation and best sup approximation in linear 2 normed spaces are discussed in this paper. The characterization and uniqueness theorems for these nonlinear approximations are gi...The best approximation, best Σ approximation and best sup approximation in linear 2 normed spaces are discussed in this paper. The characterization and uniqueness theorems for these nonlinear approximations are given.展开更多
The task of determining the greatest common divisors (GCD) for several polynomials which arises in image compression, computer algebra and speech encoding can be formulated as a low rank approximation problem with Syl...The task of determining the greatest common divisors (GCD) for several polynomials which arises in image compression, computer algebra and speech encoding can be formulated as a low rank approximation problem with Sylvester matrix. This paper demonstrates a method based on structured total least norm (STLN) algorithm for matrices with Sylvester structure. We demonstrate the algorithm to compute an approximate GCD. Both the theoretical analysis and the computational results show that the method is feasible.展开更多
A peak norm is defined for Lp spaces of E-valued Bochner integrable functions, where E is a Banach space, and best approximations from a sun to elements of the space are characterized. Applications are given to some f...A peak norm is defined for Lp spaces of E-valued Bochner integrable functions, where E is a Banach space, and best approximations from a sun to elements of the space are characterized. Applications are given to some families of simultaneous best approximation problems.展开更多
This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zer...This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.展开更多
The aim of the paper is to estimate the density functions or distribution functions measured by Wasserstein metric, a typical kind of statistical distances, which is usually required in the statistical learning. Based...The aim of the paper is to estimate the density functions or distribution functions measured by Wasserstein metric, a typical kind of statistical distances, which is usually required in the statistical learning. Based on the classical Bernstein approximation, a scheme is presented. To get the error estimates of the scheme, the problem turns to estimating the L1 norm of the Bernstein approximation for monotone C-1 functions, which was rarely discussed in the classical approximation theory. Finally, we get a probability estimate by the statistical distance.展开更多
In this paper we study best local quasi-rational approximation and best local approximation from finite dimensional subspaces of vectorial functions of several variables.Our approach extends and unifies several proble...In this paper we study best local quasi-rational approximation and best local approximation from finite dimensional subspaces of vectorial functions of several variables.Our approach extends and unifies several problems concerning best local multi-point approximation in different norms.展开更多
Let S∈Rn×n be a symmetric and nontrival involution matrix. We say that A∈E R n×n is a symmetric reflexive matrix if AT = A and SAS = A. Let S R r n×n(S)={A|A= AT,A = SAS, A∈Rn×n}. This paper dis...Let S∈Rn×n be a symmetric and nontrival involution matrix. We say that A∈E R n×n is a symmetric reflexive matrix if AT = A and SAS = A. Let S R r n×n(S)={A|A= AT,A = SAS, A∈Rn×n}. This paper discusses the following two problems. The first one is as follows. Given Z∈Rn×m (m < n),∧= diag(λ1,...,λm)∈Rm×m, andα,β∈R withα<β. Find a subset (?)(Z,∧,α,β) of SRrn×n(S) such that AZ = Z∧holds for any A∈(?)(Z,∧,α,β) and the remaining eigenvaluesλm+1 ,...,λn of A are located in the interval [α,β], Moreover, for a given B∈Rn×n, the second problem is to find AB∈(?)(Z,∧,α,β) such that where ||.|| is the Frobenius norm. Using the properties of symmetric reflexive matrices, the two problems are essentially decomposed into the same kind of subproblems for two real symmetric matrices with smaller dimensions, and then the expressions of the general solution for the two problems are derived.展开更多
The open question raised by Reich is studied in a Banach space with uniform normal structure, whose norm is uniformly Gateaux differentiable. Under more suitable assumptions imposed on an asymptotically nonexpansive m...The open question raised by Reich is studied in a Banach space with uniform normal structure, whose norm is uniformly Gateaux differentiable. Under more suitable assumptions imposed on an asymptotically nonexpansive mapping, an affirmative answer to Reich' s open question is given. The results presented extend and improve Zhang Shisheng' s recent ones in the following aspects : (i) Zhang' s stronger condition that the sequence of iterative parameters converges to zero is removed; (ii) Zhang' s stronger assumption that the asymptotically nonexpansive mapping has a fixed point is removed; (iii) Zhang' s stronger condition that the sequence generated by the Banach Contraction Principle is strongly convergent is also removed. Moreover, these also extend and improve the corresponding ones obtained previously by several authors including Reich, Shioji, Takahashi,Ueda and Wittmann.展开更多
The nuclear norm convex relaxation method is proposed to force the rank constraint in the identification of the continuous-time( CT) Hammerstein system. The CT Hammerstein system is composed of a linear time invariant...The nuclear norm convex relaxation method is proposed to force the rank constraint in the identification of the continuous-time( CT) Hammerstein system. The CT Hammerstein system is composed of a linear time invariant( LTI) system and a static nonlinear function( the linear part is followed by the nonlinear part). The nonlinear function is approximated by the pseudospectral basis functions, which have a better performance than Hinge functions and Radial Basis functions. After the approximation on the nonlinear function, the CT Hammerstein system has been transformed into a multiple-input single-output( MISO) linear model system with the differential pre-filters. However, the coefficients of static nonlinearity and the numerators of the linear transfer function are coupled together to challenge the parameters identification of the Hammerstein system. This problem is solved by replacing the one-rank constraint of the regularization optimization with the nuclear norm convex relaxation. Finally, a numerical example is given to verify the accuracy and the efficiency of the method.展开更多
本文提出了一个超声图像复原模型,该模型融合了加权核范数最小化和数据保真度。加权核范数最小化能够自适应处理奇异值以保留图像细节,数据保真度则增强了图像复原效果。本研究采用交替方向乘子法(Alternating Direction Method of Mult...本文提出了一个超声图像复原模型,该模型融合了加权核范数最小化和数据保真度。加权核范数最小化能够自适应处理奇异值以保留图像细节,数据保真度则增强了图像复原效果。本研究采用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)高效求解,并通过实验结果验证了该方法的优越性。展开更多
针对贝叶斯网络参数的近似等式约束,提出采用正态分布构建该类约束的数学模型;然后用Dirichlet分布逼近正态分布,并通过目标优化计算Dirichlet分布的超参数;最后采用贝叶斯最大后验概率(maximum a posterior,MAP)估计方法计算网络参数...针对贝叶斯网络参数的近似等式约束,提出采用正态分布构建该类约束的数学模型;然后用Dirichlet分布逼近正态分布,并通过目标优化计算Dirichlet分布的超参数;最后采用贝叶斯最大后验概率(maximum a posterior,MAP)估计方法计算网络参数值。在不同样本量的数据集下进行实验测试,将本文方法与其他4种主要方法进行比较,结果表明:该方法的参数学习精度都好于其他4种方法,尤其是在样本量较小的情况下。该方法的运行时间高于其他4种方法,但相同样本量的数据集下,学习精度的提高倍数要高于时间增加的倍数。展开更多
基金This work is supported by Universidad Nacional de Rio Cuarto.
文摘In this paper we establish a result about uniformly equivalent norms and the convergence of best approximant pairs on the unitary ball for a family of weighted Luxemburg norms with normalized weight functions depending on ε, when ε→ 0. It is introduced a general concept of Pade approximant and we study its relation with the best local quasi-rational approximant. We characterize the limit of the error for polynomial approximation. We also obtain a new condition over a weight function in order to obtain inequalities in Lp norm, which play an important role in problems of weighted best local Lp approximation in several variables.
基金supported by the National Natural Science Foundation of China(11871109)NSAF(U1830107)the Science Challenge Project(TZ2018001)
文摘This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk.
文摘The best approximation, best Σ approximation and best sup approximation in linear 2 normed spaces are discussed in this paper. The characterization and uniqueness theorems for these nonlinear approximations are given.
文摘The task of determining the greatest common divisors (GCD) for several polynomials which arises in image compression, computer algebra and speech encoding can be formulated as a low rank approximation problem with Sylvester matrix. This paper demonstrates a method based on structured total least norm (STLN) algorithm for matrices with Sylvester structure. We demonstrate the algorithm to compute an approximate GCD. Both the theoretical analysis and the computational results show that the method is feasible.
文摘A peak norm is defined for Lp spaces of E-valued Bochner integrable functions, where E is a Banach space, and best approximations from a sun to elements of the space are characterized. Applications are given to some families of simultaneous best approximation problems.
基金supported by the Development of airborne gravity gradiometer(No.2017YFC0601601)open subject of Key Laboratory of Petroleum Resources Research,Institute of Geology and Geophysics,Chinese Academy of Sciences(No.KLOR2018-8)
文摘This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.
基金Supported by 973-Project of China(2006cb303102)the National Science Foundation of China(11461161006,11201079)
文摘The aim of the paper is to estimate the density functions or distribution functions measured by Wasserstein metric, a typical kind of statistical distances, which is usually required in the statistical learning. Based on the classical Bernstein approximation, a scheme is presented. To get the error estimates of the scheme, the problem turns to estimating the L1 norm of the Bernstein approximation for monotone C-1 functions, which was rarely discussed in the classical approximation theory. Finally, we get a probability estimate by the statistical distance.
基金Supported by Universidad Nacional de Rfo Cuaito and CONICET.
文摘In this paper we study best local quasi-rational approximation and best local approximation from finite dimensional subspaces of vectorial functions of several variables.Our approach extends and unifies several problems concerning best local multi-point approximation in different norms.
基金Research supported by the National Natural Science Foundation of China. (10571047)
文摘Let S∈Rn×n be a symmetric and nontrival involution matrix. We say that A∈E R n×n is a symmetric reflexive matrix if AT = A and SAS = A. Let S R r n×n(S)={A|A= AT,A = SAS, A∈Rn×n}. This paper discusses the following two problems. The first one is as follows. Given Z∈Rn×m (m < n),∧= diag(λ1,...,λm)∈Rm×m, andα,β∈R withα<β. Find a subset (?)(Z,∧,α,β) of SRrn×n(S) such that AZ = Z∧holds for any A∈(?)(Z,∧,α,β) and the remaining eigenvaluesλm+1 ,...,λn of A are located in the interval [α,β], Moreover, for a given B∈Rn×n, the second problem is to find AB∈(?)(Z,∧,α,β) such that where ||.|| is the Frobenius norm. Using the properties of symmetric reflexive matrices, the two problems are essentially decomposed into the same kind of subproblems for two real symmetric matrices with smaller dimensions, and then the expressions of the general solution for the two problems are derived.
文摘The open question raised by Reich is studied in a Banach space with uniform normal structure, whose norm is uniformly Gateaux differentiable. Under more suitable assumptions imposed on an asymptotically nonexpansive mapping, an affirmative answer to Reich' s open question is given. The results presented extend and improve Zhang Shisheng' s recent ones in the following aspects : (i) Zhang' s stronger condition that the sequence of iterative parameters converges to zero is removed; (ii) Zhang' s stronger assumption that the asymptotically nonexpansive mapping has a fixed point is removed; (iii) Zhang' s stronger condition that the sequence generated by the Banach Contraction Principle is strongly convergent is also removed. Moreover, these also extend and improve the corresponding ones obtained previously by several authors including Reich, Shioji, Takahashi,Ueda and Wittmann.
文摘The nuclear norm convex relaxation method is proposed to force the rank constraint in the identification of the continuous-time( CT) Hammerstein system. The CT Hammerstein system is composed of a linear time invariant( LTI) system and a static nonlinear function( the linear part is followed by the nonlinear part). The nonlinear function is approximated by the pseudospectral basis functions, which have a better performance than Hinge functions and Radial Basis functions. After the approximation on the nonlinear function, the CT Hammerstein system has been transformed into a multiple-input single-output( MISO) linear model system with the differential pre-filters. However, the coefficients of static nonlinearity and the numerators of the linear transfer function are coupled together to challenge the parameters identification of the Hammerstein system. This problem is solved by replacing the one-rank constraint of the regularization optimization with the nuclear norm convex relaxation. Finally, a numerical example is given to verify the accuracy and the efficiency of the method.
文摘本文提出了一个超声图像复原模型,该模型融合了加权核范数最小化和数据保真度。加权核范数最小化能够自适应处理奇异值以保留图像细节,数据保真度则增强了图像复原效果。本研究采用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)高效求解,并通过实验结果验证了该方法的优越性。
文摘针对贝叶斯网络参数的近似等式约束,提出采用正态分布构建该类约束的数学模型;然后用Dirichlet分布逼近正态分布,并通过目标优化计算Dirichlet分布的超参数;最后采用贝叶斯最大后验概率(maximum a posterior,MAP)估计方法计算网络参数值。在不同样本量的数据集下进行实验测试,将本文方法与其他4种主要方法进行比较,结果表明:该方法的参数学习精度都好于其他4种方法,尤其是在样本量较小的情况下。该方法的运行时间高于其他4种方法,但相同样本量的数据集下,学习精度的提高倍数要高于时间增加的倍数。