Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str...Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.展开更多
In this article, the authors consider the nonlinear elliptic systems under the natural growth condition. They use a new method introduced by Duzaar and Grotowski, for proving partial regularity for weak solutions, bas...In this article, the authors consider the nonlinear elliptic systems under the natural growth condition. They use a new method introduced by Duzaar and Grotowski, for proving partial regularity for weak solutions, based on a generalization of the technique of harmonic approximation. And directly establish the optimal Holder exponent for the derivative of a weak solution.展开更多
In this article, we consider nonlinear elliptic systems of divergence type with Dini continuous coefficients. The authors use a new method introduced by Duzaar and Grotowski, to prove partial regularity for weak solut...In this article, we consider nonlinear elliptic systems of divergence type with Dini continuous coefficients. The authors use a new method introduced by Duzaar and Grotowski, to prove partial regularity for weak solutions, based on a generalization of the technique of harmonic approximation and directly establish the optimal HSlder exponent for the derivative of a weak solution on its regular set.展开更多
The frequency domain analysis of systems is an important topic in control theory. Powerful graphical tools exist in classic control, such as the Nyquist plot, Bode plots, and Nichols chart. These methods have been wid...The frequency domain analysis of systems is an important topic in control theory. Powerful graphical tools exist in classic control, such as the Nyquist plot, Bode plots, and Nichols chart. These methods have been widely used to evaluate the frequency domain behavior of system. A literature survey shows that various approaches are available for the computation of the frequency response of control systems under different types of parametric dependencies, such as affine, multi-linear, polynomial, etc. However, there is a lack of tools in the literature to construct the Bode envelopes for the general nonlinear type of parametric dependencies. In this paper, we address the problem of computation of the envelope of Bode frequency response of a non-rational transfer function with nonlinear parametric uncertainties varying over a box. We propose two techniques to compute the Bode envelopes:first, based on the natural interval extensions (NIE) combined with uniform subdivision and second, based on the existing Taylor model combined with subdivision strategy. We also propose the algorithms to further speed up both methods through extrapolation techniques.展开更多
In this article,we consider interior regularity for weak solutions to nonlinear elliptic systems of divergence type with Dini continuous coefficients under natural growth condition for the case 1〈m〈 2.All estimates ...In this article,we consider interior regularity for weak solutions to nonlinear elliptic systems of divergence type with Dini continuous coefficients under natural growth condition for the case 1〈m〈 2.All estimates in the case of m≥2 is no longer suitable,and we can’t obtain the Caccioppoli’s second inequality by using these techniques developed in the case of m≥2.But the Caccioppoli’s second inequality is the key to use A-harmonic approximation method.Thus,we adopt another technique introduced by Acerbi and Fcsco to overcome the difficulty and we also overcome those difficulties due to Dini condition.And then we apply the A-harmonic approximation method to prove partial regularity of weak solutions.展开更多
The Navier-Stokes equations for slip flow between two very closely spaced parallel plates are transformed to an ordinary differential equation based on the pressure gradient along the flow direction using a new simila...The Navier-Stokes equations for slip flow between two very closely spaced parallel plates are transformed to an ordinary differential equation based on the pressure gradient along the flow direction using a new similarity transformation. A powerful easy-to-use homotopy analysis method was used to obtain an analytical solution. The convergence theorem for the homotopy analysis method is presented. The solutions show that the second-order homotopy analysis method solution is accurate enough for the current problem.展开更多
A can0nical problem is investigated for high frequency electromagnetic radiation from amonopo1e on a conducting cylinder with c0ating-At first, the exact solution of this problem is given interms of Dyadic Green's...A can0nical problem is investigated for high frequency electromagnetic radiation from amonopo1e on a conducting cylinder with c0ating-At first, the exact solution of this problem is given interms of Dyadic Green's function method. Then, using Watson transformation and high frequency asymptotic approximate technique to the exact soluton, a UTD soultion is obtained. The radiation field excitedby a monopole is expressed in terms of the compound Fock' S functions (CFF), which reduce to the geomertrical optics result in the deep lit region and the creeping waves in the shadow region.展开更多
We consider the questions of boundary regularity for weak solutions of second-order nonlinear elliptic systems under the natural growth condition. We obtain a general criterion for a weak solution to be regular in the...We consider the questions of boundary regularity for weak solutions of second-order nonlinear elliptic systems under the natural growth condition. We obtain a general criterion for a weak solution to be regular in the neighborhood of a given boundary point. The proof yields directly the optimal regularity for the solution in this neighborhood. This result is new for the situation under the natural growth conditions.展开更多
The operation of a dynamic voltage restorer(DVR)is studied using a three-phase voltage source converter(VSC)-based topology to alleviate voltage anomalies from a polluted supply voltage.The control algorithm used incl...The operation of a dynamic voltage restorer(DVR)is studied using a three-phase voltage source converter(VSC)-based topology to alleviate voltage anomalies from a polluted supply voltage.The control algorithm used included two components.The first is an adaptive Takagi-Sugeno-Kang(TSK)-based adaptive reweighted L1 norm adaption-based normalized least mean square(TSK-ARNA-NLMS)unit,which is proposed for the extraction of fundamental active and reactive components from the non-ideal supply and is further employed to generate the load reference voltage and switching pulse for the VSC.The step size was evaluated using the proposed TSK-ARNA-NLMS controller,and the TSK unit was optimized by integration with the marine predator algorithm(MPA)for a faster convergence rate.The second,a fractional-order PID controller(FOPID),was employed for AC-and DC-link voltage regulation and was approximated using the Oustaloup technique.The FOPID()PI Dγμprovides more freedom for tuning the settling time,rise time,and overshoot.The FOPID coefficients(Ki,Kd,Kp,γ,andμ)were optimized by employing an advanced ant lion optimization(ALO)meta-heuristics technique to minimize the performance index,namely,the integral time absolute error(ITAE)and assess the accuracy of controllers.The DVR performance was validated under dynamic-and steady-state conditions.展开更多
The optimal control of nonlinear systems has been studied for years by many researchers. However, the application of optimal control problem to nonlinear non-affine systems needs more attention. In this paper we propo...The optimal control of nonlinear systems has been studied for years by many researchers. However, the application of optimal control problem to nonlinear non-affine systems needs more attention. In this paper we propose an optimal control design technique for a class of nonlinear and control non-affine equations. The dynamic equations of a flexible shaft supported by a pair of active magnetic bearings (AMBs) are used as the nonlinear control non-affine equations. Mathematical model for the flexible beam is chosen to be the well known Timoshenko beam model, which takes rotary inertia and shear deformations into account, and it is assumed that the shaft is supported by two frictionless bearings at the ends. The effective control of such systems is extremely important for very high angular velocity shafts which are a feature of many modern machines. The control must be able to cope with unbalanced masses and hence be very robust. We shall approach the problem by discretising the Timoshenko beam model and using standard difference formulae to develop a finite-dimensional model of the system. Then we use a recently developed technique for controlling nonlinear systems by reducing the problem to a sequence of linear time-varying (LTV) systems. An optimal control designed for each approximating linear, time-varying system and recent results show that this method will converge uniformly on compact time intervals to the optimal solution.展开更多
Assuming linear theory,the two dimensional problem of water wave scattering past thick rectangular barrier in presence of thin ice cover,is investigated here.Mainly four types of thick barriers are considered here and...Assuming linear theory,the two dimensional problem of water wave scattering past thick rectangular barrier in presence of thin ice cover,is investigated here.Mainly four types of thick barriers are considered here and also the ice cover is taken as a thin elastic plate.May be the barrier is partially immersed or bottom standing or fully submerged in water or in the form of thick rectangular wall with a submerged gap presence in water.The problem is formulated in terms of a first kind integral equation by considering the symmetric and antisymmetric parts of velocity potential function.The integral equation is solved by using multi term Galerkin approximation method involving ultraspherical Gegenbauer polynomials as its basis function.The numerical solutions of reflection and transmission coefficients are obtained for different parametric values and these are seen to satisfy the energy identity.These coefficients are depicted graphically against the wave number in a number of figures.Some figures available in the literature drawn by using different mathematical methods as well as laboratory experiments are also recovered following the present analysis without the presence of ice cover,thereby confirming the correctness of the results presented here.It is also observed that the reflection and transmission coefficients depend significantly on the width of the barriers.展开更多
We propose a smoothing trust region filter algorithm for nonsmooth nonconvex least squares problems. We present convergence theorems of the proposed algorithm to a Clarke stationary point or a global minimizer of the ...We propose a smoothing trust region filter algorithm for nonsmooth nonconvex least squares problems. We present convergence theorems of the proposed algorithm to a Clarke stationary point or a global minimizer of the objective function under certain conditions. Preliminary numerical experiments show the efficiency of the proposed algorithm for finding zeros of a system of polynomial equations with high degrees on the sphere and solving differential variational inequalities.展开更多
In this paper, we investigate spectral method for mixed inhomogeneous boundary value problems in three dimensions. Some results on the three-dimensional Legendre approxima- tion in Jacobi weighted Sobolev space are es...In this paper, we investigate spectral method for mixed inhomogeneous boundary value problems in three dimensions. Some results on the three-dimensional Legendre approxima- tion in Jacobi weighted Sobolev space are established, which improve and generalize the existing results, and play an important role in numerical solutions of partial differential equations. We also develop a lifting technique, with which we could handle mixed inho- mogeneous boundary conditions easily. As examples of applications, spectral schemes are provided for three model problems with mixed inhomogeneous boundary conditions. The spectral accuracy in space of proposed algorithms is proved. Efficient implementations are presented. Numerical results demonstrate their high accuracy, and confirm the theoretical analysis well.展开更多
文摘Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.
基金Supported by NSF of China(10531020)the Program of 985 Innovation Engieering on Information in Xiamen University(2004-2007).
文摘In this article, the authors consider the nonlinear elliptic systems under the natural growth condition. They use a new method introduced by Duzaar and Grotowski, for proving partial regularity for weak solutions, based on a generalization of the technique of harmonic approximation. And directly establish the optimal Holder exponent for the derivative of a weak solution.
基金Supported by NSF of China (10531020)the Education Department of Fujian Province(JK2009045)the Program of 985 Innovation Engieering on Information in Xiamen University(2004-2007)
文摘In this article, we consider nonlinear elliptic systems of divergence type with Dini continuous coefficients. The authors use a new method introduced by Duzaar and Grotowski, to prove partial regularity for weak solutions, based on a generalization of the technique of harmonic approximation and directly establish the optimal HSlder exponent for the derivative of a weak solution on its regular set.
文摘The frequency domain analysis of systems is an important topic in control theory. Powerful graphical tools exist in classic control, such as the Nyquist plot, Bode plots, and Nichols chart. These methods have been widely used to evaluate the frequency domain behavior of system. A literature survey shows that various approaches are available for the computation of the frequency response of control systems under different types of parametric dependencies, such as affine, multi-linear, polynomial, etc. However, there is a lack of tools in the literature to construct the Bode envelopes for the general nonlinear type of parametric dependencies. In this paper, we address the problem of computation of the envelope of Bode frequency response of a non-rational transfer function with nonlinear parametric uncertainties varying over a box. We propose two techniques to compute the Bode envelopes:first, based on the natural interval extensions (NIE) combined with uniform subdivision and second, based on the existing Taylor model combined with subdivision strategy. We also propose the algorithms to further speed up both methods through extrapolation techniques.
基金Supported by National Natural Science Foundation of China (10976026)the Education Department of Fujian Province (JK2009045)
文摘In this article,we consider interior regularity for weak solutions to nonlinear elliptic systems of divergence type with Dini continuous coefficients under natural growth condition for the case 1〈m〈 2.All estimates in the case of m≥2 is no longer suitable,and we can’t obtain the Caccioppoli’s second inequality by using these techniques developed in the case of m≥2.But the Caccioppoli’s second inequality is the key to use A-harmonic approximation method.Thus,we adopt another technique introduced by Acerbi and Fcsco to overcome the difficulty and we also overcome those difficulties due to Dini condition.And then we apply the A-harmonic approximation method to prove partial regularity of weak solutions.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50776006.
文摘The Navier-Stokes equations for slip flow between two very closely spaced parallel plates are transformed to an ordinary differential equation based on the pressure gradient along the flow direction using a new similarity transformation. A powerful easy-to-use homotopy analysis method was used to obtain an analytical solution. The convergence theorem for the homotopy analysis method is presented. The solutions show that the second-order homotopy analysis method solution is accurate enough for the current problem.
文摘A can0nical problem is investigated for high frequency electromagnetic radiation from amonopo1e on a conducting cylinder with c0ating-At first, the exact solution of this problem is given interms of Dyadic Green's function method. Then, using Watson transformation and high frequency asymptotic approximate technique to the exact soluton, a UTD soultion is obtained. The radiation field excitedby a monopole is expressed in terms of the compound Fock' S functions (CFF), which reduce to the geomertrical optics result in the deep lit region and the creeping waves in the shadow region.
基金Supported by NSF(No. 10531020) of Chinathe Program of 985 Innovation Engineering on Information in Xiamen University (2004-2007) and NCETXMU
文摘We consider the questions of boundary regularity for weak solutions of second-order nonlinear elliptic systems under the natural growth condition. We obtain a general criterion for a weak solution to be regular in the neighborhood of a given boundary point. The proof yields directly the optimal regularity for the solution in this neighborhood. This result is new for the situation under the natural growth conditions.
文摘The operation of a dynamic voltage restorer(DVR)is studied using a three-phase voltage source converter(VSC)-based topology to alleviate voltage anomalies from a polluted supply voltage.The control algorithm used included two components.The first is an adaptive Takagi-Sugeno-Kang(TSK)-based adaptive reweighted L1 norm adaption-based normalized least mean square(TSK-ARNA-NLMS)unit,which is proposed for the extraction of fundamental active and reactive components from the non-ideal supply and is further employed to generate the load reference voltage and switching pulse for the VSC.The step size was evaluated using the proposed TSK-ARNA-NLMS controller,and the TSK unit was optimized by integration with the marine predator algorithm(MPA)for a faster convergence rate.The second,a fractional-order PID controller(FOPID),was employed for AC-and DC-link voltage regulation and was approximated using the Oustaloup technique.The FOPID()PI Dγμprovides more freedom for tuning the settling time,rise time,and overshoot.The FOPID coefficients(Ki,Kd,Kp,γ,andμ)were optimized by employing an advanced ant lion optimization(ALO)meta-heuristics technique to minimize the performance index,namely,the integral time absolute error(ITAE)and assess the accuracy of controllers.The DVR performance was validated under dynamic-and steady-state conditions.
文摘The optimal control of nonlinear systems has been studied for years by many researchers. However, the application of optimal control problem to nonlinear non-affine systems needs more attention. In this paper we propose an optimal control design technique for a class of nonlinear and control non-affine equations. The dynamic equations of a flexible shaft supported by a pair of active magnetic bearings (AMBs) are used as the nonlinear control non-affine equations. Mathematical model for the flexible beam is chosen to be the well known Timoshenko beam model, which takes rotary inertia and shear deformations into account, and it is assumed that the shaft is supported by two frictionless bearings at the ends. The effective control of such systems is extremely important for very high angular velocity shafts which are a feature of many modern machines. The control must be able to cope with unbalanced masses and hence be very robust. We shall approach the problem by discretising the Timoshenko beam model and using standard difference formulae to develop a finite-dimensional model of the system. Then we use a recently developed technique for controlling nonlinear systems by reducing the problem to a sequence of linear time-varying (LTV) systems. An optimal control designed for each approximating linear, time-varying system and recent results show that this method will converge uniformly on compact time intervals to the optimal solution.
基金This work is supported by DST through the INSPIRE fellowship to AS.(IF170841).
文摘Assuming linear theory,the two dimensional problem of water wave scattering past thick rectangular barrier in presence of thin ice cover,is investigated here.Mainly four types of thick barriers are considered here and also the ice cover is taken as a thin elastic plate.May be the barrier is partially immersed or bottom standing or fully submerged in water or in the form of thick rectangular wall with a submerged gap presence in water.The problem is formulated in terms of a first kind integral equation by considering the symmetric and antisymmetric parts of velocity potential function.The integral equation is solved by using multi term Galerkin approximation method involving ultraspherical Gegenbauer polynomials as its basis function.The numerical solutions of reflection and transmission coefficients are obtained for different parametric values and these are seen to satisfy the energy identity.These coefficients are depicted graphically against the wave number in a number of figures.Some figures available in the literature drawn by using different mathematical methods as well as laboratory experiments are also recovered following the present analysis without the presence of ice cover,thereby confirming the correctness of the results presented here.It is also observed that the reflection and transmission coefficients depend significantly on the width of the barriers.
基金supported by Hong Kong Research Grant Council(Grant No.Poly U5001/12p)National Natural Science Foundation of China(Grant No.11101231)
文摘We propose a smoothing trust region filter algorithm for nonsmooth nonconvex least squares problems. We present convergence theorems of the proposed algorithm to a Clarke stationary point or a global minimizer of the objective function under certain conditions. Preliminary numerical experiments show the efficiency of the proposed algorithm for finding zeros of a system of polynomial equations with high degrees on the sphere and solving differential variational inequalities.
文摘In this paper, we investigate spectral method for mixed inhomogeneous boundary value problems in three dimensions. Some results on the three-dimensional Legendre approxima- tion in Jacobi weighted Sobolev space are established, which improve and generalize the existing results, and play an important role in numerical solutions of partial differential equations. We also develop a lifting technique, with which we could handle mixed inho- mogeneous boundary conditions easily. As examples of applications, spectral schemes are provided for three model problems with mixed inhomogeneous boundary conditions. The spectral accuracy in space of proposed algorithms is proved. Efficient implementations are presented. Numerical results demonstrate their high accuracy, and confirm the theoretical analysis well.