期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Removal of Agricultural Non-Point Source Pollutants by Artificial Aquatic Food Web System: A Study Case of the Control of Cynobacterial Bloom in Jiyu River
1
作者 Nichun Guo John A. Dowing +3 位作者 Christopher T. Filstrup Deqin Yu Wenhao Ji Youhua Ma 《Open Journal of Ecology》 2016年第12期699-713,共15页
An artificial aquatic food web (AAFW) system was designed to remove the non-point source pollutants in eutrophic Jiyu river. A certain amount of Scenedesmus obliquus and Daphnia pulex was cultured in the system for th... An artificial aquatic food web (AAFW) system was designed to remove the non-point source pollutants in eutrophic Jiyu river. A certain amount of Scenedesmus obliquus and Daphnia pulex was cultured in the system for the control of serious cyanobacterial bloom. The AAFW system was a continuous-flow system including one storage basin of 3 m<sup>3</sup> capacity with polluted river water (the total nitrogen-TN: 4.49 mg&sdot;l<sup>-1</sup><sup></sup>;the total phosphorus-TP: 0.192 mg&sdot;l-1</sup></sup><sup></sup>), one phytoplankton tank of 3 m<sup>3</sup> capacity with an initial concentrations of S. obliquus about 5.8 × 10<sup>3</sup> ind&sdot;l-1</sup><sup></sup>, and one zooplankton growth chamber of 1.5 m<sup>3</sup> capacity with an initial abundance of D. pulex about 22.5 ind&sdot;l-1</sup></sup>. The system was optimized by setting hydraulic retention time of phytoplankton tank as 5 days and the experiments were operated for 45 days. Compared with the polluted river, TN and TP were removed about 28% and 47% by the AAFW system, respectively. The biomass of phytoplankton decrease from 6.33 mg&sdot;l-1<sup></sup> to 1.48 mg&sdot;l-1</sup><sup></sup> and the percentage of cyanobacteria decrease from 43.93% to 2.36%, the biomass of Crustacean zooplankton increase from 0.34 mg&sdot;l-1</sup></sup><sup></sup> to 1.53 mg&sdot;l-1</sup></sup><sup></sup> and the percentage of D. pulex increase from 19.19% to 57.62%. Our results indicated that the AAFW system not only is an efficient, flexible system for reducing nutrient levels in tributary rivers, but also has an ability to control the cyanobacteria bloom and rebuilding the aquatic ecosystem from the polluted river water. 展开更多
关键词 Non-Point Source Pollutants Artificial aquatic food Web System Reducing Nutrient Levels Cyanobacterial Bloom Control
下载PDF
Total mercury in wild fish in Guizhou reservoirs, China 被引量:6
2
作者 Haiyu Yan Atle Rustadbakken +5 位作者 Heng Yao Thorjorn Larssen Xinbin Feng Ting Liu Lihai Shang Thrond O. Haugen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第8期1129-1136,共8页
The health hazard of mercury (Hg) compounds is internationally recognized, and the main pathways for methylmercury (MeHg) intake in humans are through consumption of food, especially fish. Given the large releases... The health hazard of mercury (Hg) compounds is internationally recognized, and the main pathways for methylmercury (MeHg) intake in humans are through consumption of food, especially fish. Given the large releases of Hg to the environment in China, combined with the fast development of hydropower, this issue deserves attention. Provided similar mobilization pathways of Hg in China as seen in reservoirs in North America and Europe one should expect increased Hg contamination in relation to future hydropower reservoir construction in this country. This study presents total Hg (THg) concentrations in wild fish from six Guizhou reservoirs, China. The THg concentrations in fish were generally low despite high background levels in the bedrock and depositions from local point sources. The over all mean ± SD concentration of THg was (0.066 ± 0.078) μg/g (n = 235). After adjusting for among-reservoir variation in THg, there were significant differences in THg among functional groups of the fish, assumed to re?ect trophic levels. Predicted THg- concentration ratios, retrieved from a mixed linear model, between the functional groups were 9:4:4:1 for carnivorous, omnivorous, planktivorous and herbivorous fish. This result indicated that MeHg accumulation may prevail even under circumstances with short food chains as in this Chinese water system. No fish exceeded recommended maximum THg limit for human consumption set by World Health Organization and the Standardization Administration of China (0.5 μg/g fish wet weight (ww)). Only six fish (2.5%) exceeded the maximum THg limit set by US Environmental Protection Agency (0.3 μg/g fish ww). 展开更多
关键词 BIOACCUMULATION mercury methylation mixed linear models aquatic food web LAKES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部