The paper presents a flow plasma reactor permitting modification of the properties of water/aqueous solutions by stochastic resonance amplification of vibrations of selected chemical species in water with electromagne...The paper presents a flow plasma reactor permitting modification of the properties of water/aqueous solutions by stochastic resonance amplification of vibrations of selected chemical species in water with electromagnetic noise generated during a plasma discharge. The main parameters characterizing the quality for super-pure water, tap water and water from the intake in Besko (Poland) before and after the process in the plasma reactor were presented for comparison. In addition, the <sup>17</sup>O NMR (the full width at half maximum) and electrospray ionization mass spectrometry (ESI MS) methods were used to determine differences in physicochemical parameters between the untreated and plasma-treated water. It has been established that the water subjected to plasma treatment shows much different gas absorption properties than the untreated water samples, as a function of temperature and pressure, in this paper we report exemplary data for CO<sub>2</sub>, oxygen and acetylene. The improved gas absorption properties of the plasma-treated water make it attractive for the use in industrial processes. It is worth pointing to a great capacity of the new reactor (4000 l/h), and low energy consumption (20 MJ/h) for the treatment of the above mentioned volume flow rate of water.展开更多
Light weight and mechanically strong α-chitin aerogels were fabricated using the sol-gel/self-assembly method from α-chitin in different aqueous alkali hydroxide(KOH, Na OH and Li OH)/urea solutions. All of the α-c...Light weight and mechanically strong α-chitin aerogels were fabricated using the sol-gel/self-assembly method from α-chitin in different aqueous alkali hydroxide(KOH, Na OH and Li OH)/urea solutions. All of the α-chitin solutions exhibited temperature-induced rapid gelation behavior. 13 C nuclear magnetic resonance(NMR) spectra revealed that the aqueous alkali hydroxide/urea solutions are non-derivatizing solvents for α-chitin. Fourier transform infrared(FT-IR), X-ray diffraction(XRD) and cross-polarization magic angle spinning(CP/MAS) 13 C NMR confirmed that α-chitin has a stable aggregate structure after undergoing dissolution and regeneration. Subsequently, nanostructured α-chitin aerogels were fabricated by regeneration from the chitin solutions in ethanol and then freeze-drying from t-Bu OH. These α-chitin aerogels exhibited high porosity(87% to 94%), low density(0.09 to 0.19 g/cm^3), high specific surface area(419 to 535 m^2/g) and large pore volume(2.7 to 3.8 cm^3/g). Moreover, the α-chitin aerogels exhibited good mechanical properties under compression and tension models. In vitro studies showed that m BMSCs cultured on chitin hydrogels have good biocompatibility. These nanostructured α-chitin aerogels may be useful for various applications, such as catalyst supports, carbon aerogel precursors and biomedical materials.展开更多
文摘The paper presents a flow plasma reactor permitting modification of the properties of water/aqueous solutions by stochastic resonance amplification of vibrations of selected chemical species in water with electromagnetic noise generated during a plasma discharge. The main parameters characterizing the quality for super-pure water, tap water and water from the intake in Besko (Poland) before and after the process in the plasma reactor were presented for comparison. In addition, the <sup>17</sup>O NMR (the full width at half maximum) and electrospray ionization mass spectrometry (ESI MS) methods were used to determine differences in physicochemical parameters between the untreated and plasma-treated water. It has been established that the water subjected to plasma treatment shows much different gas absorption properties than the untreated water samples, as a function of temperature and pressure, in this paper we report exemplary data for CO<sub>2</sub>, oxygen and acetylene. The improved gas absorption properties of the plasma-treated water make it attractive for the use in industrial processes. It is worth pointing to a great capacity of the new reactor (4000 l/h), and low energy consumption (20 MJ/h) for the treatment of the above mentioned volume flow rate of water.
基金supported by the National Natural Science Foundation of China (21422405, 51373125)the Major Program of National Natural Science Foundation of China (21334005)+1 种基金the facility support of the Natural Science Foundation of Hubei Provincethe Fundamental Research Funds for the Central Universities
文摘Light weight and mechanically strong α-chitin aerogels were fabricated using the sol-gel/self-assembly method from α-chitin in different aqueous alkali hydroxide(KOH, Na OH and Li OH)/urea solutions. All of the α-chitin solutions exhibited temperature-induced rapid gelation behavior. 13 C nuclear magnetic resonance(NMR) spectra revealed that the aqueous alkali hydroxide/urea solutions are non-derivatizing solvents for α-chitin. Fourier transform infrared(FT-IR), X-ray diffraction(XRD) and cross-polarization magic angle spinning(CP/MAS) 13 C NMR confirmed that α-chitin has a stable aggregate structure after undergoing dissolution and regeneration. Subsequently, nanostructured α-chitin aerogels were fabricated by regeneration from the chitin solutions in ethanol and then freeze-drying from t-Bu OH. These α-chitin aerogels exhibited high porosity(87% to 94%), low density(0.09 to 0.19 g/cm^3), high specific surface area(419 to 535 m^2/g) and large pore volume(2.7 to 3.8 cm^3/g). Moreover, the α-chitin aerogels exhibited good mechanical properties under compression and tension models. In vitro studies showed that m BMSCs cultured on chitin hydrogels have good biocompatibility. These nanostructured α-chitin aerogels may be useful for various applications, such as catalyst supports, carbon aerogel precursors and biomedical materials.