期刊文献+
共找到884篇文章
< 1 2 45 >
每页显示 20 50 100
Behavior of Aramid Fiber/Ultrahigh Molecular Weight Polyethylene Fiber Hybrid Composites under Charpy Impact and Ballistic Impact 被引量:2
1
作者 YanWU WeihongZHONG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第4期357-360,共4页
The aramid fiber礥HMWPE (ultrahigh molecular weight polyethylene) fiber hybrid composites (AF礑F) were ma-nufactured. By Charpy impact, the low velocity impact behavior of AF礑F composite was studied. And the high vel... The aramid fiber礥HMWPE (ultrahigh molecular weight polyethylene) fiber hybrid composites (AF礑F) were ma-nufactured. By Charpy impact, the low velocity impact behavior of AF礑F composite was studied. And the high velocity impact behavior under ballistic impact was also investigated. The influence of hybrid ratio on the performances of low and high velocity impact was analyzed, and hybrid structures with good impact properties under low velocity impact and high velocity were optimized. For Charpy impact, the maximal impact load increased with the accretion of the AF layers for AF礑F hybrid composites. The total impact power was reduced with the decrease of DF layers and the delamination can result in the increase of total impact power. For ballistic impact, the DF ballistic performance was better than that of the AF and the hybrid ratio had a crucial influence. The failure morphology of AF礑F hybrid composite under Charpy impact and ballistic impact was analyzed. The AF礑F hybrid composites in suitable hybrid ratio could attain better performance than AF or DF composites. 展开更多
关键词 aramid fiber Hybrid composites Charpy impact Ballistic impact
下载PDF
Toughness and Fracture Mechanism of Carbon Fiber Reinforced Epoxy Composites 被引量:1
2
作者 LI Yuanyuan JI Yu +5 位作者 GU Zhiqi LI Qiuya HE Hongzhe ZHANG Yan WANG Ping SUI Jianhua 《Journal of Donghua University(English Edition)》 CAS 2022年第3期193-205,共13页
The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosil... The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosilica were used to modify epoxy resin.Effect of modified resin and unmodified resin on fracture toughness of CFRP was compared and discussed.Lay-up angles and thicknesses effects on fracture toughness of composites were also investigated.The fracture toughness of CFRP was obtained through double cantilever beam(DCB)and end notched flexure(ENF)tests.The results showed that the composites prepared by modified resin exhibited high fracture toughness compared with unmodified composites.The fracture toughness value of mode I increased from 1.83 kJ/m2 to 4.55 kJ/m2.The fracture toughness value of mode II increased from 2.30 kJ/m2 to 6.47 kJ/m2. 展开更多
关键词 fracture toughness carbon fiber reinforced epoxy composite(CFRP) mixed modification laying angle
下载PDF
Optical and Mechanical Properties of Ramie Fiber/Epoxy Resin Transparent Composites
3
作者 Chunhua Liu Dongfang Zou +3 位作者 Qinqin Huang Shang Li Xia Zheng Xingong Li 《Journal of Renewable Materials》 EI 2023年第10期3613-3624,共12页
The residual resources of ramie fiber-based textile products were used as raw materials.Ramie fiber felt(RF)was modified by NaClO_(2) aqueous solution and then impregnated with water-based epoxy resin(WER).RF/WER tran... The residual resources of ramie fiber-based textile products were used as raw materials.Ramie fiber felt(RF)was modified by NaClO_(2) aqueous solution and then impregnated with water-based epoxy resin(WER).RF/WER transparent composite materials were prepared by lamination hot pressing process.The composite materials’color difference,transmittance,haze,density,water absorption,and mechanical properties were determined to assess the effects of NaClO_(2) treatment and the number of ramie fiber layers on the properties of the prepared composites.The results showed significantly improved optical and mechanical properties of the RF/WER transparent composites after NaClO_(2) treatment.With the increase of ramie fiber layers,the composites’whiteness,transmittance,and water absorption decreased while the haze increased.For material with three layers,the optical transmittance in the visible light region was 82%,and the haze was 96%,indicating the material has both high transmittance and high haze characteristics.The tensile strength increases with the increase of the number of layers,and the tensile strength of the composite with six layers is 243 MPa.This study broadens the scope of application of ramie fiber as a new option for home decoration materials. 展开更多
关键词 Ramie fiber water-based epoxy transparent composites TRANSMITTANCE HAZE tensile strength
下载PDF
Surface Characteristics of Rare Earth Treated Carbon Fibers and Interfacial Properties of Composites 被引量:3
4
作者 徐志伟 黄玉东 +2 位作者 宋元军 张春华 刘丽 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第4期462-468,共7页
Effect of rare earth treatment on surface physicochemical properties of carbon fibers and interfacial properties of carbon fiber/epoxy composites was investigated, and the interfacial adhesion mechanism of treated car... Effect of rare earth treatment on surface physicochemical properties of carbon fibers and interfacial properties of carbon fiber/epoxy composites was investigated, and the interfacial adhesion mechanism of treated carbon fiber/epoxy composite was analyzed. It was found that rare earth treatment led to an increase of fiber surface roughness, improvement of oxygeaa-containing groups, and introduction of rare earth element on the carbon fiber surface. As a result, coordination linkages between fibers and rare earth, and between rare earth and resin matrix were formed separately, thereby the interlaminar shear strength (ILSS) of composites increased, which indicated the improvement of the interfacial adhesion between fibers and matrix resin resulting from the increase of carboxyl and carbonyl. 展开更多
关键词 carbon fiber/epoxy composite interfacial properties X-ray photoelectron spectroscopy rare earths
下载PDF
Determination of Water Diffusion Coefficients and Dynamics in Adhesive/Carbon Fiber Reinforced Epoxy Resin Composite Joints 被引量:3
5
作者 WANG Chao WANG zhi +1 位作者 WANG Jing SU Tao 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第4期474-478,共5页
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan... To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment. 展开更多
关键词 Diffusion coefficient DYNAMICS Energy dispersive X-ray spectroscopy Elemental analysis Adhesive/ carbon fiber reinforced epoxy resin composites joint
下载PDF
Evaluation of Mechanical and Physical Properties of Pressed Coir Fiber/Epoxy Composite with NaOH and Microwave Treatment of Fiber 被引量:1
6
作者 Ilyas Renreng Bakri Bakri +1 位作者 Sri Chandrabakty Naharuddin 《Journal of Renewable Materials》 SCIE EI 2021年第2期325-335,共11页
In this study,the influence of sodium hydroxide(NaOH)treatment and microwave treatment of coir fibers on the mechanical and physical properties of pressed coir fiber/epoxy composite were evaluated.The composite was fa... In this study,the influence of sodium hydroxide(NaOH)treatment and microwave treatment of coir fibers on the mechanical and physical properties of pressed coir fiber/epoxy composite were evaluated.The composite was fabricated with a hand lay-up method with compression molding.Before composite fabrication,pressed coir fiber was treated with NaOH and microwave treatments.Mechanical testing(tensile,flexural,and impact testing)of the composite was conducted.Then,water absorption and thickness swelling testing are also performed.The fractured composite surface morphology after the tensile test was analyzed by scanning electronic microscopy(SEM).The results revealed that tensile,flexural,and impact strengths of composite tend to increase after NaOH treatment of coir fiber followed by microwave treatment for 10 and 20 minutes of exposure time compared to untreated fiber.However,for NaOH treatment,the tensile,flexural and,impact strengths of composite reduce.The reducing of the tensile strength of the composite is due to the agglomeration fiber occurred,which is displayed in the SEM micrograph.Furthermore,microwave treatment of fiber for 10 minutes and NaOH treatment followed by microwave treatment for 20 minutes of exposure time decreases the water absorption and thickness swelling of the composite. 展开更多
关键词 Coir fiber epoxy NaOH treatment microwave treatment compositE
下载PDF
Experimental Study on Influence of Dimples on Lubrication Performance of Glass Fiber-epoxy Resin Composite under Natural Seawater Lubrication 被引量:8
7
作者 WU Shaofeng GAO Dianrong +1 位作者 LIANG Yingna CHEN Bo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期110-117,共8页
Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics... Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/rain. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition. 展开更多
关键词 !bionic non-smooth surface seawater lubrication friction coefficient glass fiber-epoxy resin composite stainless steel 316L
下载PDF
Influence of Non-smooth Surface on Tribological Properties of Glass Fiber-epoxy Resin Composite Sliding against Stainless Steel under Natural Seawater Lubrication 被引量:8
8
作者 WU Shaofeng GAO Dianrong +1 位作者 LIANG Yingna CHEN Bo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1171-1176,共6页
With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawat... With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite(GF/EPR) coupled with stainless steel 316 L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study. 展开更多
关键词 non-smooth surface friction coefficient wear resistance glass fiber-epoxy resin composite seawater lubrication stainless steel 316L
下载PDF
Enhancing the Mechanical Strength for a Microwave Absorption Composite Based on Graphene Nanoplatelet/Epoxy with Carbon Fibers 被引量:1
9
作者 Maryam Jahan Richard Osuemeshi Inakpenu +1 位作者 Kuo Li Guanglin Zhao 《Open Journal of Composite Materials》 2019年第2期230-248,共19页
Microwave absorption (MWA) materials such as graphene nanoplatelet (GNP)/epoxy are mostly used as coatings on existing structures without considering mechanical properties. In this work, we aim to enhance the mechanic... Microwave absorption (MWA) materials such as graphene nanoplatelet (GNP)/epoxy are mostly used as coatings on existing structures without considering mechanical properties. In this work, we aim to enhance the mechanical strength of the composite for multifunctional potentials. We used carbon fiber (four layers) to reinforce GNP/epoxy composite (2 mm thick) and investigated their multifunctional properties with GNP loading from 3 to 7 wt%. We measured the tensile strength, hardness, and MW absorption (26.5 - 40 GHz) of composite samples. Our results showed an increase in tensile strength to 109.1 ± 7.9 MPa with 7 wt% GNP in the composite from 15.3 MPa for pure epoxy. The hardness of the composites was also substantially enhanced with GNP loading up to 7 wt%. A MW absorption ratio of 72% was attained for the sample with 7 wt% GNP loading near 40 GHz. The homogenous dispersion of GNPs in the matrix reduces the stress concentration and minimizes the influence of the defects. The high MW absorption and large transmission loss together with enhanced mechanical strength provides a novel multifunctional material for potential applications. 展开更多
关键词 Microwave Absorption Mechanical Strength GRAPHENE Nanoplatelet/epoxy/Carbon fiber compositE MULTIFUNCTIONAL compositE
下载PDF
Phosphorylated Salicylic Acid as Flame Retardant in Epoxy Resins and Composites
10
作者 Lara Greiner Philipp Kukla +1 位作者 Sebastian Eibl Manfred Döring 《Journal of Renewable Materials》 SCIE EI 2022年第7期1931-1950,共20页
A novel,versatile flame retardant substructure based on phosphorylated salicylic acid(SCP)is described and used in the synthesis of new flame retardants for HexFlowRTM6,a high-performance epoxy resin used in resin tr... A novel,versatile flame retardant substructure based on phosphorylated salicylic acid(SCP)is described and used in the synthesis of new flame retardants for HexFlowRTM6,a high-performance epoxy resin used in resin transfer molding processes as composite matrix.The starting material salicylic acid can be obtained from natural sources.SCP as reactive phosphorus chloride is converted with a novolak,a novolak containing 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide(DOPO)substituents or DOPO-hydroquinone to flame retardants with sufficient thermal stability and high char yield.Additionally,these flame retardants are soluble in the resin as well as react into the epoxy network.The determined thermal stability and glass transition temperatures of flame retarded neat resin samples as well as the interlaminar shear strength of corresponding carbon fiber reinforced composite materials showed the applicability of these flame retardants.Neat resin samples and composites were tested for their flammability by UL94 and/or flame-retardant performance by cone calorimetry.All tested flame retardants decrease the peak of heat release rate by up to 54%for neat resin samples.A combination of DOPO and SCP in one flame retardant shows synergistic effects in char formation and the mode of action adapts to neat resin or fiber-reinforced samples,so there is efficient flame retardancy in both cases.Therefore,a tailoring of SCP based flame retardants is possible.Additionally,these flame retardants efficiently reduce fiber degradation during combustion of carbon fiber-reinforced epoxy resins as observed by scanning electron microscopy and energy dispersive X-ray spectroscopy. 展开更多
关键词 epoxy resin compositE fiber protection bio-based flame retardant
下载PDF
Interlaminar Fracture Toughness of Epoxy Glass Fiber Fly Ash Laminate Composite
11
作者 Ajit Bhandakkar Niraj Kumar +1 位作者 R. C. Prasad Shankar M. L. Sastry 《Materials Sciences and Applications》 2014年第4期231-244,共14页
Epoxy glass fiber laminate composite (PMCs) are finding ever increasing applications in aerospace and automobile industries due to its high strength to weight ratio and resistance to aqueous environment. Additions of ... Epoxy glass fiber laminate composite (PMCs) are finding ever increasing applications in aerospace and automobile industries due to its high strength to weight ratio and resistance to aqueous environment. Additions of particulate reinforcements in the polymer matrix are reported to improve the Interlaminar Shear Strength and Interlaminar Fracture Toughness of the composites. In the present investigation, epoxy glass fiber laminate composites were processed using hand layup and vacuum bagging technique. The particulate reinforcement precipitator fly ash (25 - 45 μm) was added in the epoxy matrix by mechanical mixing up to 10 wt%. The effects of fly ash reinforcement on the mechanical properties and Interlaminar Fracture Toughness were studied before and after exposure to aqueous fog in a salt fog chamber at 45°C. In unexposed condition Mode I interlaminar fracture toughness of epoxy glass fiber laminate composite improved by the addition of fly ash reinforcement 10% (By weight) by 49.43% and when it was subjected to aqueous fog for 10 days the interlaminar fracture toughness improved 58.42%. Exposure to aqueous fog for 10 days causes plasticization of resin matrix and weakening of fiber/matrix interface results in improvement in interlaminar fracture toughness. The fracture surfaces were analyzed using scanning electron microscopy. 展开更多
关键词 INTERLAMINAR Fracture TOUGHNESS epoxy Glass fiber LAMINATE compositE FLY Ash
下载PDF
The Effect of Curative Concentration on Thermal and Mechanical Properties of Flexible Epoxy Coated Jute Fabric Reinforced Polyamide 6 Composites
12
作者 Smith Thitithanasarn Kazushi Yamada +1 位作者 Umaru S. Ishiaku Hiroyuki Hamada 《Open Journal of Composite Materials》 2012年第4期133-138,共6页
Many researchers have shown interest in the reinforcement of commodity thermoplastic with natural fibers. However, the drawback of natural fibers is their low thermal processing temperatures, that border around 200℃.... Many researchers have shown interest in the reinforcement of commodity thermoplastic with natural fibers. However, the drawback of natural fibers is their low thermal processing temperatures, that border around 200℃. In this investigation, we tried to improve the thermal stability of natural fibers with the use of flexible epoxy surface coating that could facilitate processing with engineering thermoplastics. Jute fabric and Polyamide 6 (PA6) composites were prepared by compression molding. The thermal decomposition characteristics of the jute fabric were evaluated by using thermo gravimetric analysis (TGA). Mechanical analysis was conducted to evaluate tensile test and three point bending test of composite. It was found that thermal degradation resistance of jute fabric was improved by coating with flexible epoxy resin. Moreover, the flexural modulus improved with increasing curative concentration. The interfacial interaction between the epoxy and PA6 was clearly indicated by the photo micrographs of the polished cross sections of the coated and uncoated jute fabric/PA6 composites. 展开更多
关键词 Natural fiber (Jute) POLYAMINE 6 FLEXIBLE epoxy composites Thermal Degradation Mechanical Properties
下载PDF
Fabrication and Characterization of Glass Fiber with SiC Reinforced Polymer Composites
13
作者 Rajashekar Reddy Palle Jens Schuster +1 位作者 Yousuf Pasha Shaik Monis Kazmi 《Open Journal of Composite Materials》 2022年第1期16-29,共14页
Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for ve... Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for vehicles, electrical equipment panels, and medical devices enclosures. These materials are also widely used for structural applications in aerospace, automotive, and in providing alternatives to traditional metallic materials. The paper fabricated epoxy and polyester resin composites by using silicon carbide in various proportions along with GFRP. The hand lay-up technique was used to fabricate the laminates. To determine the properties of fabricated composites, </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">tensile, impact, and flexural tests were conducted. This method of fabrication was very simple and cost-effective. Their mechan</span><span style="font-family:Verdana;">ical properties like yield strength, yield strain, Young’s modulus, flexural</span><span style="font-family:Verdana;"> mod</span><span style="font-family:Verdana;">ulus, and impact energy </span></span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> investigated. The mechanical properties of the</span><span style="font-family:""><span style="font-family:Verdana;"> GFRP composites were also compared with the fiber volume fraction. The fiber volume fraction plays a major role in the mechanical properties of GFRP composites. Young’s modulus and tensile strength of fabricated composites </span><span style="font-family:Verdana;">were modelled and compared with measured values. The results show that</span><span style="font-family:Verdana;"> composites </span><span style="font-family:Verdana;">with epoxy resin demonstrate higher strength and modulus compared to</span><span style="font-family:Verdana;"> composites with polyester resin. 展开更多
关键词 Polymer Matrix composite epoxy and Polyester Resins Silicon Carbide Glass fibers Hand Lay-Up Technique Modelling
下载PDF
Experimental Analysis of Bamboo and E-Glass Fiber Reinforced Epoxy Hybrid Composite
14
作者 Daniel Redda Abiy Alene 《材料科学与工程(中英文B版)》 2016年第3期153-160,共8页
下载PDF
Effect of Accelerated Aging Temperature under Artificial Seawater on the Properties of Carbon Fiber/Epoxy Composites and the Erosion Mechanism
15
作者 XU Jinwei LU Yunfei +3 位作者 DING He DENG Zongyi SHI Minxian HUANG Zhixiong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2024年第6期1365-1371,共7页
In order to explore the effect of artificial accelerated aging temperature on the performance of carbon fiber/epoxy resin composites,we used artificial seawater as the aging medium,designed the aging environment of se... In order to explore the effect of artificial accelerated aging temperature on the performance of carbon fiber/epoxy resin composites,we used artificial seawater as the aging medium,designed the aging environment of seawater at different temperatures under normal pressure,and studied the aging behavior of carbon fiber/epoxy composites.The infrared spectroscopy results show that,with the increase of aging temperature,the degree of hydrolysis of the composite is greater.At the same time,after 250 days of aging of artificial seawater at regular temperature,40 and 60 ℃,the moisture absorption rates of composite materials were 0.45%,0.63%,and 1.05%,and the retention rates of interlaminar shear strength were 91%,78%,and 62%,respectively.It is shown that the temperature of the aging environment has a significant impact on the hygroscopic behavior and mechanical properties of the composite,that is,the higher the temperature,the faster the moisture absorption of the composite,and the faster the decay of the mechanical properties of the composite. 展开更多
关键词 carbon fiber/epoxy composites artificial seawater aging temperature moisture absorption mechanical properties
下载PDF
Tensile Properties of Weft Knitted Fabric Reinforced Composites 被引量:5
16
作者 Long Hairu(龙海如) 《Journal of Donghua University(English Edition)》 EI CAS 2001年第1期97-100,共4页
Seven kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/epoxy composite laminates. Tensile tests were carried out to examine and compare the mechanical properties in course... Seven kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/epoxy composite laminates. Tensile tests were carried out to examine and compare the mechanical properties in course and wale direction of these composites. On the basis of experimental results, attempts have been made to analyze some main factors influencing stress-strain curve, ultimate tensile strength and initial elastic modulus of specimens. 展开更多
关键词 WEFT KNITTED fabric GLASS fiber/ epoxy composite tensile properties.
下载PDF
Mechanical properties of short carbon/glass fiber reinforced high mechanical performance epoxy resins 被引量:1
17
作者 张竞 黄培 《Journal of Chongqing University》 CAS 2009年第4期222-230,共9页
To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrice... To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrices and reinforced by the same volume fraction(5%)of short carbon and glass fiber.Their mechanical properties were investigated from the perspective of chemical structure and volume shrinkage ratio of epoxy.We analyzed their tensile strength and modulus based on the mixing rule and Halpin-Tsai eq... 展开更多
关键词 epoxy resin MATRIX fibers composites mechanical properties
下载PDF
Recyclable High-performance Carbon Fiber Reinforced Epoxy Composites Based on Dithioacetal Covalent Adaptive Network
18
作者 Gui-Lian Shi Ting-Cheng Li +1 位作者 Dao-Hong Zhang Jun-Heng Zhang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第10期1514-1524,I0011,共12页
Recycling of carbon fiber reinforced composites is important for sustainable development and the circular economy.Despite the use of dynamic chemistry,developing high-strength recyclable CFRPs remains a major challeng... Recycling of carbon fiber reinforced composites is important for sustainable development and the circular economy.Despite the use of dynamic chemistry,developing high-strength recyclable CFRPs remains a major challenge due to the mutual exclusivity between the dynamic and mechanical properties of materials.Here,we developed a high-strength recyclable epoxy resin(HREP)based on dynamic dithioacetal covalent adaptive network using diglycidyl ether bisphenol A(DGEBA),pentaerythritol tetra(3-mercapto-propionate)(PETMP),and vanillin epoxy resin(VEPR).At high temperatures,the exchange reaction of thermally activated dithioacetals accelerated the rearrangement of the network,giving it significant reprocessing ability.Moreover,HREP exhibited excellent solvent resistance due to the increased cross-linking density.Using this high-strength recyclable epoxy resin as the matrix and carbon fiber modified with hyperbranched ionic liquids(HBP-AMIM+PF6-)as the reinforcing agent,high performance CFRPs were successfully prepared.The tensile strength,interfacial shear strength(IFSS)and interlaminar shear strength(ILSS)of the optimized formulation(HREP20/CF-HBPPF6)were 1016.1,70.8 and 76.0 MPa,respectively.In addition,the CFRPs demonstrated excellent solvent and acid/alkali-resistance.The CFRPs could completely degrade within 24 h in DMSO at 140℃,and the recycled CF still maintained the same tensile strength and ILSS as the original after multiple degradation cycles. 展开更多
关键词 epoxy resin Hyperbranched ionic liquid Recycling Carbon fiber composites
原文传递
CF/Epoxy复合材料的界面自组装 被引量:6
19
作者 贺金梅 黄玉东 +1 位作者 周浩然 刘丽 《复合材料学报》 EI CAS CSCD 北大核心 2007年第1期28-33,共6页
提出了一种新的炭纤维表面改性方法———分子自组装,即在表面金属化的炭纤维上进行有机分子的自组装。表面增强拉曼散射光谱(SERS)分析证实了含氮或含硫的芳杂环化合物化学吸附在银的表面,并形成了平躺取向的自组装膜结构。X射线光电... 提出了一种新的炭纤维表面改性方法———分子自组装,即在表面金属化的炭纤维上进行有机分子的自组装。表面增强拉曼散射光谱(SERS)分析证实了含氮或含硫的芳杂环化合物化学吸附在银的表面,并形成了平躺取向的自组装膜结构。X射线光电子能谱(XPS)测试进一步证实了自组装膜通过S或N原子和Ag形成配位共价键吸附在炭纤维表面。表面经组装改性后的炭纤维和环氧复合后界面粘结强度得到了不同程度的提高,揭示了界面区域微观结构与性能的关系。 展开更多
关键词 炭纤维/环氧复合材料 分子自组装 芳杂环化合物 表面增强拉曼光谱 X射线光电子能谱
下载PDF
芳基硫醇在CF/Epoxy复合材料界面上的自组装研究 被引量:2
20
作者 贺金梅 黄玉东 +1 位作者 刘丽 孔令艳 《航空材料学报》 EI CAS CSCD 2008年第1期76-81,共6页
提出了一种新的碳纤维表面改性方法——分子自组装,即在表面金属化的碳纤维上进行有机分子的自组装。表面增强拉曼散射光谱(SERS)分析证实了末端官能团不同的芳基硫醇化学吸附在银的表面,并形成了平躺取向和倾斜取向的自组装膜结构。X-... 提出了一种新的碳纤维表面改性方法——分子自组装,即在表面金属化的碳纤维上进行有机分子的自组装。表面增强拉曼散射光谱(SERS)分析证实了末端官能团不同的芳基硫醇化学吸附在银的表面,并形成了平躺取向和倾斜取向的自组装膜结构。X-射线光电子能谱(XPS)测试进一步证实了两种自组装膜通过S原子和Ag形成共价键吸附在碳纤维表面。表面经组装改性后的碳纤维和环氧复合后界面粘结强度得到了不同程度的提高,揭示了界面区域膜结构和性能的关系。 展开更多
关键词 碳纤维/环氧复合材料界面 分子自组装 芳基硫醇 SERS
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部