To investigate influence of welding parameters on weld bead geometry in underwater wet flux cored arc welding (FCAW), orthogonal experiments of underwater wet FCAW were conducted in the hyperbaric chamber at water d...To investigate influence of welding parameters on weld bead geometry in underwater wet flux cored arc welding (FCAW), orthogonal experiments of underwater wet FCAW were conducted in the hyperbaric chamber at water depth from 0.2 m to 60 m and mathematical models were developed by multiple curvilinear regression method from the experimental data. Sensitivity analysis was then performed to predict the bead geometry and evaluate the influence of welding parameters. The results reveal that water depth has a greater influence on bead geometry than other welding parameters when welding at a water depth less than 10 m. At a water depth deeper than 10 m, a change in travel speed affects the bead geometry more strongly than other welding parameters.展开更多
Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, ...Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, Al 2 O 3 content, microstructure, micro-hardness and wear resistance of coatings produced by arc spraying of the cored wires were experimentally investigated and were compared with those of pure aluminum coating.展开更多
In this investigation, an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered (Q&.T) steel welds. Flux cored arc wel...In this investigation, an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered (Q&.T) steel welds. Flux cored arc welding (FCAW) process were used making welds using austenitic stainless steel (ASS) and low hydrogen ferritic steel (LHF) consumables. The diffusible hydrogen levels in the weld metal of the ASS and LHF consumables were determined by mercury method. Residual stresses were evaluated using X-ray stress analyzer and implant test was carried out to study the cold cracking of the welds. Results indicate that ASS welds offer a greater resistance to cold cracking of armour grade Q&T steel welds.展开更多
Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) an...Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) and softening in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy to avoid HIC because of higher solubility for hydrogen in austenitic phase. Recent studies revealed that low hydrogen ferritic (LHF) steel consumables can also be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits and required resistance against cold cracking. Hence, in this investigation an attempt has been made to study the performance of armour grade Q&T steel joints fabricated by flux cored arc welding with LHF steel consumables. Two different consumables namely (i) austenitic stainless steel and (ii) low hydrogen ferritic steel have been used to fabricate the joints by flux cored arc welding (FCAW) process. The joints fabricated by LHF consumable exhibited superior transverse tensile properties due to the presence of ferrite microstructure in weld metal. The joints fabricated by ASS consumable showed higher impact toughness due to the presence of austenitic phase in weld metal microstructure. The HAZ softening in coarse grain heat affected zone (CGHAZ) is less in the joints fabricated using LHF consumable due to the lower heat input involved during fabrication compared to the joints fabricated using ASS consumables.展开更多
The formation mechanism of inclusion in welds with different aluminum contents was determined based on thermodynamic equilibrium in self-shielded flux cored arc welds.Inclusions in welds were systematically studied by...The formation mechanism of inclusion in welds with different aluminum contents was determined based on thermodynamic equilibrium in self-shielded flux cored arc welds.Inclusions in welds were systematically studied by optical microscopy,scanning microscopy and image analyzer.The results show that the average size and the contamination rate of inclusions in low-aluminum weld are lower than those in high-aluminum weld.Highly faceted AlN inclusions with big size in the high-aluminum weld are more than those in low-aluminum weld.As a result,the low temperature impact toughness of low-aluminum weld is higher than that of high-aluminum weld.Finally,the thermodynamic analysis indicates that thermodynamic result agrees with the experimental data.展开更多
The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative stu...The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative study of similar nature has also been carried out during flux-cored arc weld deposition in globular and spray transfer modes.The effect of pulse parameters has been studied by considering their mean current and arc voltage.The arc characteristics studied by its root diameter,projected diameter and length,and the behavior of metal transfer noted by the metal transfer model and the droplet diameter have been found to vary significantly with the pulse parameters.The observation may help in understanding the arc characteristics with respect to the variation in pulse parameters which may be beneficial in using pulse current FCAW to produce desired weld quality.展开更多
A transformer type iron core snubber, as a protective device against the stray capacitance during the breakdown in EAST, is analyzed in detail. Three kinds of topology are presented. Then with the analysis for equival...A transformer type iron core snubber, as a protective device against the stray capacitance during the breakdown in EAST, is analyzed in detail. Three kinds of topology are presented. Then with the analysis for equivalent circuit, the ranges of three key parameters, i.e., secondary side resistance, leakage inductance and snubber inductance, are determined. By con- sidering the saturation of the magnetic material, a design principle is Mso presented. A nearly 1:10 core snubber is tested. It is proved that a high permeability core with secondary resistor can restrain the discharge current effectively.展开更多
To study the influence laws of welding parameters on weld porosity, underwater wet flux-cored arc welding ( FCAW) duplex stainless steel S32101 was carried out in a hyperbaric chamber, and the second-order multiple ...To study the influence laws of welding parameters on weld porosity, underwater wet flux-cored arc welding ( FCAW) duplex stainless steel S32101 was carried out in a hyperbaric chamber, and the second-order multiple regression equation was established. The interactive effects of welding parameters on the porosity were analyzed by the three dimensional response surfaces and the contour plots. The results present that the interaction effect between water depth and voltage on the porosity is the most significant. Theoretically, a non-pores weld bead can be gained by reasonably matching these parameters with water depth less than 10 m. Always, the weld porosity reaches its peak value with a 7 mm/s welding speed.展开更多
The sprayed particles of metallic and cermet wires were collected to analyze the atomization state of the particles in arc spraying forming, the microstructure and properties of metallic and ceramic coatings were inve...The sprayed particles of metallic and cermet wires were collected to analyze the atomization state of the particles in arc spraying forming, the microstructure and properties of metallic and ceramic coatings were investigated and compared. Particle size analyzer was used for quantifying particle size. The XRD, SEM and optical microscope(OM) were used to analyze the phase composition and microstructure of the particles and coatings. From the experimental results, some difference of particle characteristics was established between the spraying metallic and ceramic cored wires, and the microstructure and properties of coatings depend strongly on the particles behaviors. The result shows that Fe-TiB2/Al2O3 composite coating has a high potential for abrasive wear applications.展开更多
基金Projects(51175185,50705030)supported by the National Natural Science Foundation of ChinaProject(2012ZZ0052)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(9151064101000065)supported by the Natural Science Foundation of Guangdong Province,China
文摘To investigate influence of welding parameters on weld bead geometry in underwater wet flux cored arc welding (FCAW), orthogonal experiments of underwater wet FCAW were conducted in the hyperbaric chamber at water depth from 0.2 m to 60 m and mathematical models were developed by multiple curvilinear regression method from the experimental data. Sensitivity analysis was then performed to predict the bead geometry and evaluate the influence of welding parameters. The results reveal that water depth has a greater influence on bead geometry than other welding parameters when welding at a water depth less than 10 m. At a water depth deeper than 10 m, a change in travel speed affects the bead geometry more strongly than other welding parameters.
文摘Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, Al 2 O 3 content, microstructure, micro-hardness and wear resistance of coatings produced by arc spraying of the cored wires were experimentally investigated and were compared with those of pure aluminum coating.
基金Armament Research Board (ARMREB),New Delhi for funding this projectwork (Project No MAA/03/41)
文摘In this investigation, an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered (Q&.T) steel welds. Flux cored arc welding (FCAW) process were used making welds using austenitic stainless steel (ASS) and low hydrogen ferritic steel (LHF) consumables. The diffusible hydrogen levels in the weld metal of the ASS and LHF consumables were determined by mercury method. Residual stresses were evaluated using X-ray stress analyzer and implant test was carried out to study the cold cracking of the welds. Results indicate that ASS welds offer a greater resistance to cold cracking of armour grade Q&T steel welds.
基金New Delhi for funding this project work(Project No.MAA/03/41)
文摘Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) and softening in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy to avoid HIC because of higher solubility for hydrogen in austenitic phase. Recent studies revealed that low hydrogen ferritic (LHF) steel consumables can also be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits and required resistance against cold cracking. Hence, in this investigation an attempt has been made to study the performance of armour grade Q&T steel joints fabricated by flux cored arc welding with LHF steel consumables. Two different consumables namely (i) austenitic stainless steel and (ii) low hydrogen ferritic steel have been used to fabricate the joints by flux cored arc welding (FCAW) process. The joints fabricated by LHF consumable exhibited superior transverse tensile properties due to the presence of ferrite microstructure in weld metal. The joints fabricated by ASS consumable showed higher impact toughness due to the presence of austenitic phase in weld metal microstructure. The HAZ softening in coarse grain heat affected zone (CGHAZ) is less in the joints fabricated using LHF consumable due to the lower heat input involved during fabrication compared to the joints fabricated using ASS consumables.
文摘The formation mechanism of inclusion in welds with different aluminum contents was determined based on thermodynamic equilibrium in self-shielded flux cored arc welds.Inclusions in welds were systematically studied by optical microscopy,scanning microscopy and image analyzer.The results show that the average size and the contamination rate of inclusions in low-aluminum weld are lower than those in high-aluminum weld.Highly faceted AlN inclusions with big size in the high-aluminum weld are more than those in low-aluminum weld.As a result,the low temperature impact toughness of low-aluminum weld is higher than that of high-aluminum weld.Finally,the thermodynamic analysis indicates that thermodynamic result agrees with the experimental data.
文摘The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative study of similar nature has also been carried out during flux-cored arc weld deposition in globular and spray transfer modes.The effect of pulse parameters has been studied by considering their mean current and arc voltage.The arc characteristics studied by its root diameter,projected diameter and length,and the behavior of metal transfer noted by the metal transfer model and the droplet diameter have been found to vary significantly with the pulse parameters.The observation may help in understanding the arc characteristics with respect to the variation in pulse parameters which may be beneficial in using pulse current FCAW to produce desired weld quality.
基金supported in part by Auxiliary Heating Project of EAST upgradein part by Ph. D foundation of State Education Ministry of China(No. 20060248012)
文摘A transformer type iron core snubber, as a protective device against the stray capacitance during the breakdown in EAST, is analyzed in detail. Three kinds of topology are presented. Then with the analysis for equivalent circuit, the ranges of three key parameters, i.e., secondary side resistance, leakage inductance and snubber inductance, are determined. By con- sidering the saturation of the magnetic material, a design principle is Mso presented. A nearly 1:10 core snubber is tested. It is proved that a high permeability core with secondary resistor can restrain the discharge current effectively.
基金the National Natural Science Foundation of China(Grant No.51374111&51175185)Science and Technology Plan Project of Guangdong Province(Grant No.2015B050502005)for financial support
文摘To study the influence laws of welding parameters on weld porosity, underwater wet flux-cored arc welding ( FCAW) duplex stainless steel S32101 was carried out in a hyperbaric chamber, and the second-order multiple regression equation was established. The interactive effects of welding parameters on the porosity were analyzed by the three dimensional response surfaces and the contour plots. The results present that the interaction effect between water depth and voltage on the porosity is the most significant. Theoretically, a non-pores weld bead can be gained by reasonably matching these parameters with water depth less than 10 m. Always, the weld porosity reaches its peak value with a 7 mm/s welding speed.
基金Project(50375004) supported by the National Natural Science Foundation of ChinaProject(2062005) supported by the Natural Science Foundation of Beijing City, China
文摘The sprayed particles of metallic and cermet wires were collected to analyze the atomization state of the particles in arc spraying forming, the microstructure and properties of metallic and ceramic coatings were investigated and compared. Particle size analyzer was used for quantifying particle size. The XRD, SEM and optical microscope(OM) were used to analyze the phase composition and microstructure of the particles and coatings. From the experimental results, some difference of particle characteristics was established between the spraying metallic and ceramic cored wires, and the microstructure and properties of coatings depend strongly on the particles behaviors. The result shows that Fe-TiB2/Al2O3 composite coating has a high potential for abrasive wear applications.