The physical characteristics of a plasma arc affect the stability of the keyhole and weld pool directly during keyhole plasma arc welding(KPAW).There will be significant change for these characteristics because of the...The physical characteristics of a plasma arc affect the stability of the keyhole and weld pool directly during keyhole plasma arc welding(KPAW).There will be significant change for these characteristics because of the interaction between the keyhole weld pool and plasma arc after penetration.Therefore,in order to obtain the temperature field,flow field,and arc pressure of a plasma arc under the reaction of the keyhole,the physical model of a plasma arc with a pre-set keyhole was established.In addition,the tungsten and base metal were established into the calculated domain,which can reflect the effect of plasma arc to weld pool further.Based on magneto hydrodynamics and Maxwell equations,a twoSdimensional steady state mathematical model was established.Considering the heat production of anode and cathode,the distribution of temperature field,flow field,welding current density,and plasma arc pressure were solved out by the finite difference method.From the calculated results,it is found that the plasma arc was compressed a second time by the keyhole.This additional constraint results in an obvious rise of the plasma arc pressure and flow velocity at the minimum diameter place of the keyhole,while the temperature field is impacted slightly.Finally,the observational and metallographic experiments are conducted,and the shapes of plasma arc and fusion line agree with the simulated results generally.展开更多
The kinematic characteristics of the Sanguankou-Niushoushan fault(SGK-NSSF) are of great significance to the understanding of the extension of the arc tectonic belt in the northeastern margin of the Tibet Plateau. U...The kinematic characteristics of the Sanguankou-Niushoushan fault(SGK-NSSF) are of great significance to the understanding of the extension of the arc tectonic belt in the northeastern margin of the Tibet Plateau. Using field surveys and various data collection methods, including large-scale geological mapping, measurement of typical topographies, and dating of sedimentary strata, it was determined that the SGK-NSSF exhibits obvious dextral strike-slip characteristics and thus is not a sinistral strike-slip fault, as believed by previous researchers. The results of this study show that the geological boundaries for the Paleozoic, Mesozoic, and Cenozoic eras were all dextrally dislocated by the fault, with the faulted displacements being similar. The maximum strike-slip displacement of the fault, after elimination of topographic effects, was found to be 961±6 m. The Sanguankou fault at the northern section exhibits obvious characteristics of more recent activities, with a series of small gullies having undergone synchronized dextral writhing after traversing the fault. The average horizontal slip rate of the fault since the late Quaternary was determined to be approximately 0.35 mm/a. The pre-existing fold structures formed during the late Pliocene were dislocated by the fault and became ex situ, indicating that dextral strike-slip of the fault could not have occurred prior to the late Pliocene. The maximum displacements and average slip rates were used to estimate the onset time of the dextral strike-slip activities of the fault as being after 2.7 Ma. In this study, the understanding of previous researchers concerning the extension in the northeastern margin of the Tibet Plateau was combined with analyses of the successive relationships between fold deformations and fault activities. This led to the finding that the extension in the northeastern margin of the Tibet Plateau reached the vicinity of the SGK-NSSF during the late Pliocene(~2.7 Ma), causing regional uplift and fold deformations of the strata there. During the early Quaternary, the northeastern compression of the Tibet Plateau and the counterclockwise rotation of the Ordos block collectively resulted in the dextral strike-slip activities of the SGK-NSSF. This then formed the foremost margin of the arc tectonic belt extension in the northeastern margin of the Tibet Plateau.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51505008)the National Science and Technology Major Project of China(Grant No.2014ZX04001-171)
文摘The physical characteristics of a plasma arc affect the stability of the keyhole and weld pool directly during keyhole plasma arc welding(KPAW).There will be significant change for these characteristics because of the interaction between the keyhole weld pool and plasma arc after penetration.Therefore,in order to obtain the temperature field,flow field,and arc pressure of a plasma arc under the reaction of the keyhole,the physical model of a plasma arc with a pre-set keyhole was established.In addition,the tungsten and base metal were established into the calculated domain,which can reflect the effect of plasma arc to weld pool further.Based on magneto hydrodynamics and Maxwell equations,a twoSdimensional steady state mathematical model was established.Considering the heat production of anode and cathode,the distribution of temperature field,flow field,welding current density,and plasma arc pressure were solved out by the finite difference method.From the calculated results,it is found that the plasma arc was compressed a second time by the keyhole.This additional constraint results in an obvious rise of the plasma arc pressure and flow velocity at the minimum diameter place of the keyhole,while the temperature field is impacted slightly.Finally,the observational and metallographic experiments are conducted,and the shapes of plasma arc and fusion line agree with the simulated results generally.
基金supported by the Fundamental Research Funds in Institute of Geology, China Earthquake Administration (Grant No. IGCEA1220)Special Project on Earthquake Research (Grant No. 201308012)+1 种基金National Natural Science Foundation of China (Grant Nos. 41202158, 41372220 & 41590861)Science for Earthquake Resilience (Grant No. XH14052)
文摘The kinematic characteristics of the Sanguankou-Niushoushan fault(SGK-NSSF) are of great significance to the understanding of the extension of the arc tectonic belt in the northeastern margin of the Tibet Plateau. Using field surveys and various data collection methods, including large-scale geological mapping, measurement of typical topographies, and dating of sedimentary strata, it was determined that the SGK-NSSF exhibits obvious dextral strike-slip characteristics and thus is not a sinistral strike-slip fault, as believed by previous researchers. The results of this study show that the geological boundaries for the Paleozoic, Mesozoic, and Cenozoic eras were all dextrally dislocated by the fault, with the faulted displacements being similar. The maximum strike-slip displacement of the fault, after elimination of topographic effects, was found to be 961±6 m. The Sanguankou fault at the northern section exhibits obvious characteristics of more recent activities, with a series of small gullies having undergone synchronized dextral writhing after traversing the fault. The average horizontal slip rate of the fault since the late Quaternary was determined to be approximately 0.35 mm/a. The pre-existing fold structures formed during the late Pliocene were dislocated by the fault and became ex situ, indicating that dextral strike-slip of the fault could not have occurred prior to the late Pliocene. The maximum displacements and average slip rates were used to estimate the onset time of the dextral strike-slip activities of the fault as being after 2.7 Ma. In this study, the understanding of previous researchers concerning the extension in the northeastern margin of the Tibet Plateau was combined with analyses of the successive relationships between fold deformations and fault activities. This led to the finding that the extension in the northeastern margin of the Tibet Plateau reached the vicinity of the SGK-NSSF during the late Pliocene(~2.7 Ma), causing regional uplift and fold deformations of the strata there. During the early Quaternary, the northeastern compression of the Tibet Plateau and the counterclockwise rotation of the Ordos block collectively resulted in the dextral strike-slip activities of the SGK-NSSF. This then formed the foremost margin of the arc tectonic belt extension in the northeastern margin of the Tibet Plateau.