In this study, the goal is to increase the efficiency of a high-pressure hydraulic turbine. The goal is achieved by numerical flow simulation using CFX-TASCflow. This approach reduces costs and time compared to the ex...In this study, the goal is to increase the efficiency of a high-pressure hydraulic turbine. The goal is achieved by numerical flow simulation using CFX-TASCflow. This approach reduces costs and time compared to the experimental approach and allows for improving the turbine productivity and its design. The analysis of energy losses in the flow part of the turbine Fr500, as well as the analysis of the influence of the opening of the guide vanes on changes in energy losses. The results showed that the greatest losses occur in the guide vane 3.02% based on the two-dimensional model and 2.5% based on the 3D model, which significantly affects the efficiency. The analysis was carried out using programs for calculating fluid flow in two-dimensional and three-dimensional formulations. With the help of the study, the main energy problem is solved—increasing efficiency.展开更多
Within previous EU projects, possible modifications to the engine components have been investigated, that would allow for an optimised aerodynamic or acoustic design of the EGV (exit guide vanes) of the TEC (turbin...Within previous EU projects, possible modifications to the engine components have been investigated, that would allow for an optimised aerodynamic or acoustic design of the EGV (exit guide vanes) of the TEC (turbine exit casing). However, the engine weight should not be increased and the aerodynamic performance must be at least the same. This paper compares the sound power level of a state-of-the-art TEC (reference TEC) with typical EGVs with an aerodynamically optimised TEC configuration for the engine operating point approach. It is shown that a significant weight reduction (only bladings considered) and reduction in engine length can be achieved but the sound power level for the fundamental tone (lst blade passing frequency) for this acoustically important operating point is increased. It is also shown that the losses of the aerodynamical optimised EGVs are higher for this off design point but significantly lower at the aero design point. Measurements were conducted in the STTF (subsonic test turbine facility) at the Institute for Thermal Turbo machinery and Machine Dynamics, Graz University of Technology. The inlet guide vanes, the LPT (low pressure turbine) stage, and the EGVs have been designed by MTU Aero Engines.展开更多
文摘In this study, the goal is to increase the efficiency of a high-pressure hydraulic turbine. The goal is achieved by numerical flow simulation using CFX-TASCflow. This approach reduces costs and time compared to the experimental approach and allows for improving the turbine productivity and its design. The analysis of energy losses in the flow part of the turbine Fr500, as well as the analysis of the influence of the opening of the guide vanes on changes in energy losses. The results showed that the greatest losses occur in the guide vane 3.02% based on the two-dimensional model and 2.5% based on the 3D model, which significantly affects the efficiency. The analysis was carried out using programs for calculating fluid flow in two-dimensional and three-dimensional formulations. With the help of the study, the main energy problem is solved—increasing efficiency.
文摘Within previous EU projects, possible modifications to the engine components have been investigated, that would allow for an optimised aerodynamic or acoustic design of the EGV (exit guide vanes) of the TEC (turbine exit casing). However, the engine weight should not be increased and the aerodynamic performance must be at least the same. This paper compares the sound power level of a state-of-the-art TEC (reference TEC) with typical EGVs with an aerodynamically optimised TEC configuration for the engine operating point approach. It is shown that a significant weight reduction (only bladings considered) and reduction in engine length can be achieved but the sound power level for the fundamental tone (lst blade passing frequency) for this acoustically important operating point is increased. It is also shown that the losses of the aerodynamical optimised EGVs are higher for this off design point but significantly lower at the aero design point. Measurements were conducted in the STTF (subsonic test turbine facility) at the Institute for Thermal Turbo machinery and Machine Dynamics, Graz University of Technology. The inlet guide vanes, the LPT (low pressure turbine) stage, and the EGVs have been designed by MTU Aero Engines.