A numerical simulation model for 252 kV puffer circuit breaker is constructed, by using a proven commercial computational fluid dynamics (CFD) package, PHOENICS. The model takes into account the moving parts in the ...A numerical simulation model for 252 kV puffer circuit breaker is constructed, by using a proven commercial computational fluid dynamics (CFD) package, PHOENICS. The model takes into account the moving parts in the circuit breaker, turbulence enhanced momentum and energy transport, radiation transport. The arcing process in a SF6 puffer circuit breaker with two hollow contacts is simulated under different conditions, and the simulation results are verified with experimental results. Through simulation, the pressure, temperature and velocity in the arc quenching chamber can be obtained. The simulation model is also capable of predicting the influence of design parameters variations on breaker performance, and can thus help to reduce the number of short-circuit tests during the design stage.展开更多
The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis sh...The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis shows that the sensitivity of each characteristic parameter with regard to the variation of the short circuiting transfer process is different. The sensitivity of 4 kinds among these characteristic parameters is more intense than that of the short circuiting transfer frequency. In order to take account of the synthetic influence of these characteristic parameters, by means of the characteristic parameters synthetic value, a quantitative evaluation function is built up to describe and evaluate the short circuiting transfer process of CO 2 arc welding in real time. The testing shows that the evaluation function can give a suitable synthetic valuation for the short circuiting transfer process with a variety of welding variables.展开更多
In the proposed method, the current/arc is guided through the keyhole so that the energy of the plasma jet is compensated while it is consumed in heating the workpiece along the keyhole. As a result, deep narrow penet...In the proposed method, the current/arc is guided through the keyhole so that the energy of the plasma jet is compensated while it is consumed in heating the workpiece along the keyhole. As a result, deep narrow penetration has been achieved on 12.7 mm (1/2') thick stainless steel plates using 70 A welding current.展开更多
Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation ...Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding.展开更多
In order to get a better understanding of the vacuum consumable arc remelting(VAR) processes and thus to optimize them,a 3D finite element model was developed for the temperature fields and heat transfer of titanium a...In order to get a better understanding of the vacuum consumable arc remelting(VAR) processes and thus to optimize them,a 3D finite element model was developed for the temperature fields and heat transfer of titanium alloy ingots during VAR process.The results show that the temperature fields obtained by the simulation are well validated through the experiment results.The temperature distribution is different during the whole VAR process and the steady-state molten pool forms at 329 s for d100 mm × 180 mm ingots.At the initial stage of remelting,the heat dissipation of crucible bottom plays an important role in the whole heat dissipation system.At the middle of remelting,the crucible wall becomes a major heat dissipation way.The effect of cooling velocity on the solidification structure of ingots was investigated based on the temperature fields and the results can well explain the macrostructure of titanium alloy ingots.展开更多
New methods are presented for processing and interpretation of shallow marine differential magnetic data, including constructing maps of offshore total magnetic anomalies with an extremely high reso- lution of up to 1...New methods are presented for processing and interpretation of shallow marine differential magnetic data, including constructing maps of offshore total magnetic anomalies with an extremely high reso- lution of up to 1-2 nT, mapping weak anomalies of 5-10 nT caused by mineralization effects at the contacts of hydrocarbons with host rocks, estimating depths to upper and lower boundaries of anom- alous magnetic sources, and estimating thickness of magnetic layers and boundaries of tectonic blocks. Horizontal dimensions of tectonic blocks in the so-called "seismic gap" region in the central Kuril Arc vary from 10 to 100 km, with typical dimensions of 25-30 km. The area of the "seismic gap" is a zone of intense tectonic activity and recent volcanism. Deep sources causing magnetic anomalies in the area are similar to the "magnetic belt" near Hokkaido. In the southern and central parts of Barents Sea, tectonic blocks with widths of 30-100 kin, and upper and lower boundaries of magnetic layers ranging from depths of 10 to 5 km and 18 to 30 km are calculated. Models of the magnetic layer underlying the Mezen Basin in an inland part of the White Sea-Barents Sea paleorift indicate depths to the lower boundary of the layer of 12-30 km. Weak local magnetic anomalies of 2-5 nT in the northern and central Caspian Sea were identified using the new methods, and drilling confirms that the anomalies are related to concentrations of hydrocarbon. Two layers causing magnetic anomalies are identified in the northern Caspian Sea from magnetic anomaly spectra. The upper layer lies immediately beneath the sea bottom and the lower layer occurs at depths between 30-40 m and 150-200 m.展开更多
In this work, the in-situ TiC panicles reinforced composite coating was prepared by plasma transferred arc process on the surface of Q235 steel. Microstructures, phase composition and wear property of the coating were...In this work, the in-situ TiC panicles reinforced composite coating was prepared by plasma transferred arc process on the surface of Q235 steel. Microstructures, phase composition and wear property of the coating were investigated. The results showed that the composite coating consisted mainly of T-Ni, TiC, Cr23C6, Cr7C3, Ni3Si, CrB, Cr5B3 and FeNi3 phases, and was characterized by fine TiC panicles embedded in Ni matrix. The wear resistance of composite coating was significantly improved compared with that of the steel substrate. The wear volume loss of the substrate was 443 mm3, which was about 9 times as that of in-situ TiC particles reinforced composite coating (49 mm3 ). It is mainly attributed to the presence of chromium carbide particles and in-situ TiC particles and their favorable combination with Ni matrix.展开更多
A 2D axisymmetric numerical model was established to investigate the variations of molten pool with different melt rates during the vacuum arc remelting of 8Cr4Mo4V high-strength steel,and the ingot growth was simulat...A 2D axisymmetric numerical model was established to investigate the variations of molten pool with different melt rates during the vacuum arc remelting of 8Cr4Mo4V high-strength steel,and the ingot growth was simulated by dynamic mesh techniques.The results show that as the ingot grows,the molten pool profile changes from shallow and flat to V-shaped,and both the molten pool depth and the mushy width increase.Meanwhile,the variation of both the molten pool shape and the mushy width melt rate is clarified by the thermal equilibrium analysis.As melt rate increases,both the molten pool depth and the mushy width increase.It is caused by the increment in sensible heat stored in the ingot due to the limitation of the cooling capacity of the mold.The nonlinear increment in sensible heat leads to a nonlinear increase in the mushy width.In addition,as melt rate increases,the local solidification time(LST)of ingot decreases obviously at first and then increases.When melt rate is controlled in a suitable range,LST is the lowest and the secondary dendrite arm spacing of the ingot is the smallest,which can effectively improve the compactness degree of 8Cr4Mo4V high-strength steel.展开更多
In this investigation, an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered (Q&.T) steel welds. Flux cored arc wel...In this investigation, an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered (Q&.T) steel welds. Flux cored arc welding (FCAW) process were used making welds using austenitic stainless steel (ASS) and low hydrogen ferritic steel (LHF) consumables. The diffusible hydrogen levels in the weld metal of the ASS and LHF consumables were determined by mercury method. Residual stresses were evaluated using X-ray stress analyzer and implant test was carried out to study the cold cracking of the welds. Results indicate that ASS welds offer a greater resistance to cold cracking of armour grade Q&T steel welds.展开更多
A modified mathematical model of heat source for rotating arc welding (RAW) process was developed for investigating the heat and temperature distribution. The characteristics of temperature field based on the comple...A modified mathematical model of heat source for rotating arc welding (RAW) process was developed for investigating the heat and temperature distribution. The characteristics of temperature field based on the complex welding motion trajectory were studied. In this work, a transient three-dimensional ( 3D ) model was established and computed by a finite element analysis computer program MARC as well as its subroutine. In RA'W process, the temperature changes in the style of stepladder. Moreover in the high temperature zone, there are multiple peak temperature points. These characteristics of temperature distribution are induced by the arc rotating which leads the repetitive heating or fasing during the welding process. In contrast with non-rotating arc (NRAW) process, the width of temperature distribution enlarges, and the peak temperature of weld pool decreases. Good agreement is shown between the computed results and experimental results of thermal cycle in RAW process.展开更多
Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) an...Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) and softening in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy to avoid HIC because of higher solubility for hydrogen in austenitic phase. Recent studies revealed that low hydrogen ferritic (LHF) steel consumables can also be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits and required resistance against cold cracking. Hence, in this investigation an attempt has been made to study the performance of armour grade Q&T steel joints fabricated by flux cored arc welding with LHF steel consumables. Two different consumables namely (i) austenitic stainless steel and (ii) low hydrogen ferritic steel have been used to fabricate the joints by flux cored arc welding (FCAW) process. The joints fabricated by LHF consumable exhibited superior transverse tensile properties due to the presence of ferrite microstructure in weld metal. The joints fabricated by ASS consumable showed higher impact toughness due to the presence of austenitic phase in weld metal microstructure. The HAZ softening in coarse grain heat affected zone (CGHAZ) is less in the joints fabricated using LHF consumable due to the lower heat input involved during fabrication compared to the joints fabricated using ASS consumables.展开更多
A novel hydrothermal process was developed to extract zinc from pure zinc ferrite(ZnFe2O4) nanopowder and zinc-containing electric arc furnace(EAF) dust using hexahydrated ferric chloride(FeCl3-6H2O) as a decomp...A novel hydrothermal process was developed to extract zinc from pure zinc ferrite(ZnFe2O4) nanopowder and zinc-containing electric arc furnace(EAF) dust using hexahydrated ferric chloride(FeCl3-6H2O) as a decomposing agent.The effects of solid FeCl3-6H2O to ZnFe2O4 ratio by mass(RF/Z),hydrothermal reaction temperature,and time on zinc extraction were systematically investigated.In the results,when the hydrothermal reaction is conducted at 150℃ for 2 h with RF/Z of 15:20,the efficiency of zinc extraction from ZnFe2O4 reaches97.2%,and the concentration of ferric ions(Fe^3+) in the leaching solution is nearly zero,indicating a high selectivity for zinc.In addition,the zinc extraction efficiency from the EAF dust reaches 94.5%in the case of the hydrothermal reaction performed at 200℃ for 10 h with the solid FeCl3-6H2O to EAF dust ratio by mass(RF/EAF dust) of 15:10.Zinc and iron separation is achieved by adjusting the pH value of the leaching solution according to the different precipitation pH values of metal hydroxides.展开更多
Quenched and tempered steels are prone to hydrogen induced cracking in the heat affected zone after welding. The use of austenitic stainless steel consumables to weld the above steel was the only available remedy beca...Quenched and tempered steels are prone to hydrogen induced cracking in the heat affected zone after welding. The use of austenitic stainless steel consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. In this investigation, an attempt was made to determine a suitable consumable to replace expensive austenitic consumables. Two different consumables, namely, austenitie stain less steel and low hydrogen ferritic steel, were used to fabricate the joints by shielded metal are welding (SMAW) and flux cored arc welding (FCAW) processes. The joints fabricated by using low hydrogen ferritic steel consumables showed superior transverse tensile properties, whereas joints fabricated by using austenitic stainless steel consumables exhibited better impact toughness, irrespective of the welding process used. The SMAW joints exhibited superior mechanical and impact properties, irrespective of the consumables used, than their FCAW counterparts.展开更多
Cable welding wire(CWW)CO2gas shielded welding is an innovative process arc welding with high efficiency,high quality and low consumption,in which cable wire is used as consumable electrode.CWW CO2gas shielded weldi...Cable welding wire(CWW)CO2gas shielded welding is an innovative process arc welding with high efficiency,high quality and low consumption,in which cable wire is used as consumable electrode.CWW CO2gas shielded welding and submerged arc welding(SAW)are used for contrast studies on processing property of high strength steel A36used in ship structure.The results show that the shapes of weld seam,using CWW CO2gas shielded welding and SAW,are good and no weld defect such as air hole,flaw,slag inclusion,incomplete fusion,lack of penetration and so on are found in the weld seam.Because the rotating of arc during CWW CO2gas shielded welding process has a strong stirring effect on molten pool,the grain in the heat affected zone(HAZ)of the joints,using CWW CO2 gas shielded welding,is small.Tensile failure positions of joints by CWW CO2gas shielded welding and SAW are all in the base metal,but tensile strength of CWW CO2gas shielded welding joint is higher than that of SAW joint by an average of 2.3%.The average impact energy of HAZ,using CWW CO2gas shielded welding and SAW,is almost equal,but the average impact energy of the weld seam using CWW CO2gas shielded welding is increased by 6%,and the average impact energy of the fusion line is increased by 7%.The 180°bending tests for the joints of CWW CO2 gas shielded welding and SAW are all qualified,and the joints hardness is all less than HV 355,but hardness of CWW CO2gas shielded welding wire welding joint near the fusion line is obviously lower.It can be concluded that the properties of CWW CO2gas shielded welding are better than those of the SAW joint,and CWW CO2gas shielded welding is suitable for welding high strength steel A36used in ship structure.展开更多
The performance of vacuum arc remelting (VAR) ingot depends largely on ingot structure and chemical uniformity,which are strongly influenced by molten pool profile that is influenced by VAR process.To better understan...The performance of vacuum arc remelting (VAR) ingot depends largely on ingot structure and chemical uniformity,which are strongly influenced by molten pool profile that is influenced by VAR process.To better understand the effect of remelting current on molten pool profile of titanium alloy ingot during VAR process,a 3D finite element model is developed by the ANSYS software.The results show that there are three remelting stages during VAR process when the remelting current is 2.0 kA.The molten pool depth increases gradually from 30 to 320 s,then the change of molten pool depth is very small during the steady state stage from 320 to 386 s,and lastly the molten pool depth becomes shallow after 386 s.The melting rate and temperature of superheat increase with the remelting current increasing,which leads to the augment of molten pool volume.In the end,the total remelting time and steady state molten pool time decrease with the melting current from 1.6 to 2.8 kA.展开更多
文摘A numerical simulation model for 252 kV puffer circuit breaker is constructed, by using a proven commercial computational fluid dynamics (CFD) package, PHOENICS. The model takes into account the moving parts in the circuit breaker, turbulence enhanced momentum and energy transport, radiation transport. The arcing process in a SF6 puffer circuit breaker with two hollow contacts is simulated under different conditions, and the simulation results are verified with experimental results. Through simulation, the pressure, temperature and velocity in the arc quenching chamber can be obtained. The simulation model is also capable of predicting the influence of design parameters variations on breaker performance, and can thus help to reduce the number of short-circuit tests during the design stage.
文摘The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis shows that the sensitivity of each characteristic parameter with regard to the variation of the short circuiting transfer process is different. The sensitivity of 4 kinds among these characteristic parameters is more intense than that of the short circuiting transfer frequency. In order to take account of the synthetic influence of these characteristic parameters, by means of the characteristic parameters synthetic value, a quantitative evaluation function is built up to describe and evaluate the short circuiting transfer process of CO 2 arc welding in real time. The testing shows that the evaluation function can give a suitable synthetic valuation for the short circuiting transfer process with a variety of welding variables.
基金This work is supported by the National Natural Science Foundation under Grant DMI-9812981
文摘In the proposed method, the current/arc is guided through the keyhole so that the energy of the plasma jet is compensated while it is consumed in heating the workpiece along the keyhole. As a result, deep narrow penetration has been achieved on 12.7 mm (1/2') thick stainless steel plates using 70 A welding current.
基金Project supported by the National Natural Science Foundation of China(Grant Nos50375053 and 50575077)
文摘Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding.
基金Project(2007CB613802) supported by the National Basic Research Program of China
文摘In order to get a better understanding of the vacuum consumable arc remelting(VAR) processes and thus to optimize them,a 3D finite element model was developed for the temperature fields and heat transfer of titanium alloy ingots during VAR process.The results show that the temperature fields obtained by the simulation are well validated through the experiment results.The temperature distribution is different during the whole VAR process and the steady-state molten pool forms at 329 s for d100 mm × 180 mm ingots.At the initial stage of remelting,the heat dissipation of crucible bottom plays an important role in the whole heat dissipation system.At the middle of remelting,the crucible wall becomes a major heat dissipation way.The effect of cooling velocity on the solidification structure of ingots was investigated based on the temperature fields and the results can well explain the macrostructure of titanium alloy ingots.
基金supported by the Russian Fund of Fundamental Research(Grant No.11-05-00280)
文摘New methods are presented for processing and interpretation of shallow marine differential magnetic data, including constructing maps of offshore total magnetic anomalies with an extremely high reso- lution of up to 1-2 nT, mapping weak anomalies of 5-10 nT caused by mineralization effects at the contacts of hydrocarbons with host rocks, estimating depths to upper and lower boundaries of anom- alous magnetic sources, and estimating thickness of magnetic layers and boundaries of tectonic blocks. Horizontal dimensions of tectonic blocks in the so-called "seismic gap" region in the central Kuril Arc vary from 10 to 100 km, with typical dimensions of 25-30 km. The area of the "seismic gap" is a zone of intense tectonic activity and recent volcanism. Deep sources causing magnetic anomalies in the area are similar to the "magnetic belt" near Hokkaido. In the southern and central parts of Barents Sea, tectonic blocks with widths of 30-100 kin, and upper and lower boundaries of magnetic layers ranging from depths of 10 to 5 km and 18 to 30 km are calculated. Models of the magnetic layer underlying the Mezen Basin in an inland part of the White Sea-Barents Sea paleorift indicate depths to the lower boundary of the layer of 12-30 km. Weak local magnetic anomalies of 2-5 nT in the northern and central Caspian Sea were identified using the new methods, and drilling confirms that the anomalies are related to concentrations of hydrocarbon. Two layers causing magnetic anomalies are identified in the northern Caspian Sea from magnetic anomaly spectra. The upper layer lies immediately beneath the sea bottom and the lower layer occurs at depths between 30-40 m and 150-200 m.
文摘In this work, the in-situ TiC panicles reinforced composite coating was prepared by plasma transferred arc process on the surface of Q235 steel. Microstructures, phase composition and wear property of the coating were investigated. The results showed that the composite coating consisted mainly of T-Ni, TiC, Cr23C6, Cr7C3, Ni3Si, CrB, Cr5B3 and FeNi3 phases, and was characterized by fine TiC panicles embedded in Ni matrix. The wear resistance of composite coating was significantly improved compared with that of the steel substrate. The wear volume loss of the substrate was 443 mm3, which was about 9 times as that of in-situ TiC particles reinforced composite coating (49 mm3 ). It is mainly attributed to the presence of chromium carbide particles and in-situ TiC particles and their favorable combination with Ni matrix.
基金financially supported by National Natural Science Foundation of China(Nos.U1908223 and U1960203)Fundamental Research Funds for the Central Universities(Grant No.N2125017)Talent Project of Revitalizing Liaoning(Grant No.XLYC1902046).
文摘A 2D axisymmetric numerical model was established to investigate the variations of molten pool with different melt rates during the vacuum arc remelting of 8Cr4Mo4V high-strength steel,and the ingot growth was simulated by dynamic mesh techniques.The results show that as the ingot grows,the molten pool profile changes from shallow and flat to V-shaped,and both the molten pool depth and the mushy width increase.Meanwhile,the variation of both the molten pool shape and the mushy width melt rate is clarified by the thermal equilibrium analysis.As melt rate increases,both the molten pool depth and the mushy width increase.It is caused by the increment in sensible heat stored in the ingot due to the limitation of the cooling capacity of the mold.The nonlinear increment in sensible heat leads to a nonlinear increase in the mushy width.In addition,as melt rate increases,the local solidification time(LST)of ingot decreases obviously at first and then increases.When melt rate is controlled in a suitable range,LST is the lowest and the secondary dendrite arm spacing of the ingot is the smallest,which can effectively improve the compactness degree of 8Cr4Mo4V high-strength steel.
基金Armament Research Board (ARMREB),New Delhi for funding this projectwork (Project No MAA/03/41)
文摘In this investigation, an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered (Q&.T) steel welds. Flux cored arc welding (FCAW) process were used making welds using austenitic stainless steel (ASS) and low hydrogen ferritic steel (LHF) consumables. The diffusible hydrogen levels in the weld metal of the ASS and LHF consumables were determined by mercury method. Residual stresses were evaluated using X-ray stress analyzer and implant test was carried out to study the cold cracking of the welds. Results indicate that ASS welds offer a greater resistance to cold cracking of armour grade Q&T steel welds.
基金Supported by National Natural Science Foundation of China (Grant No. 51005141 ).
文摘A modified mathematical model of heat source for rotating arc welding (RAW) process was developed for investigating the heat and temperature distribution. The characteristics of temperature field based on the complex welding motion trajectory were studied. In this work, a transient three-dimensional ( 3D ) model was established and computed by a finite element analysis computer program MARC as well as its subroutine. In RA'W process, the temperature changes in the style of stepladder. Moreover in the high temperature zone, there are multiple peak temperature points. These characteristics of temperature distribution are induced by the arc rotating which leads the repetitive heating or fasing during the welding process. In contrast with non-rotating arc (NRAW) process, the width of temperature distribution enlarges, and the peak temperature of weld pool decreases. Good agreement is shown between the computed results and experimental results of thermal cycle in RAW process.
基金New Delhi for funding this project work(Project No.MAA/03/41)
文摘Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) and softening in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy to avoid HIC because of higher solubility for hydrogen in austenitic phase. Recent studies revealed that low hydrogen ferritic (LHF) steel consumables can also be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits and required resistance against cold cracking. Hence, in this investigation an attempt has been made to study the performance of armour grade Q&T steel joints fabricated by flux cored arc welding with LHF steel consumables. Two different consumables namely (i) austenitic stainless steel and (ii) low hydrogen ferritic steel have been used to fabricate the joints by flux cored arc welding (FCAW) process. The joints fabricated by LHF consumable exhibited superior transverse tensile properties due to the presence of ferrite microstructure in weld metal. The joints fabricated by ASS consumable showed higher impact toughness due to the presence of austenitic phase in weld metal microstructure. The HAZ softening in coarse grain heat affected zone (CGHAZ) is less in the joints fabricated using LHF consumable due to the lower heat input involved during fabrication compared to the joints fabricated using ASS consumables.
基金supported by the National Basic Research Priorities Program of China (Nos. 2014CB643401 and 2013AA032003)the National Natural Science Foundation of China (No.51372019)
文摘A novel hydrothermal process was developed to extract zinc from pure zinc ferrite(ZnFe2O4) nanopowder and zinc-containing electric arc furnace(EAF) dust using hexahydrated ferric chloride(FeCl3-6H2O) as a decomposing agent.The effects of solid FeCl3-6H2O to ZnFe2O4 ratio by mass(RF/Z),hydrothermal reaction temperature,and time on zinc extraction were systematically investigated.In the results,when the hydrothermal reaction is conducted at 150℃ for 2 h with RF/Z of 15:20,the efficiency of zinc extraction from ZnFe2O4 reaches97.2%,and the concentration of ferric ions(Fe^3+) in the leaching solution is nearly zero,indicating a high selectivity for zinc.In addition,the zinc extraction efficiency from the EAF dust reaches 94.5%in the case of the hydrothermal reaction performed at 200℃ for 10 h with the solid FeCl3-6H2O to EAF dust ratio by mass(RF/EAF dust) of 15:10.Zinc and iron separation is achieved by adjusting the pH value of the leaching solution according to the different precipitation pH values of metal hydroxides.
文摘Quenched and tempered steels are prone to hydrogen induced cracking in the heat affected zone after welding. The use of austenitic stainless steel consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. In this investigation, an attempt was made to determine a suitable consumable to replace expensive austenitic consumables. Two different consumables, namely, austenitie stain less steel and low hydrogen ferritic steel, were used to fabricate the joints by shielded metal are welding (SMAW) and flux cored arc welding (FCAW) processes. The joints fabricated by using low hydrogen ferritic steel consumables showed superior transverse tensile properties, whereas joints fabricated by using austenitic stainless steel consumables exhibited better impact toughness, irrespective of the welding process used. The SMAW joints exhibited superior mechanical and impact properties, irrespective of the consumables used, than their FCAW counterparts.
基金Sponsored by National Natural Science Foundation of China(51275224,51005106)Prospective Joint Research Project ofJiangsu Province of China(BY2012184)
文摘Cable welding wire(CWW)CO2gas shielded welding is an innovative process arc welding with high efficiency,high quality and low consumption,in which cable wire is used as consumable electrode.CWW CO2gas shielded welding and submerged arc welding(SAW)are used for contrast studies on processing property of high strength steel A36used in ship structure.The results show that the shapes of weld seam,using CWW CO2gas shielded welding and SAW,are good and no weld defect such as air hole,flaw,slag inclusion,incomplete fusion,lack of penetration and so on are found in the weld seam.Because the rotating of arc during CWW CO2gas shielded welding process has a strong stirring effect on molten pool,the grain in the heat affected zone(HAZ)of the joints,using CWW CO2 gas shielded welding,is small.Tensile failure positions of joints by CWW CO2gas shielded welding and SAW are all in the base metal,but tensile strength of CWW CO2gas shielded welding joint is higher than that of SAW joint by an average of 2.3%.The average impact energy of HAZ,using CWW CO2gas shielded welding and SAW,is almost equal,but the average impact energy of the weld seam using CWW CO2gas shielded welding is increased by 6%,and the average impact energy of the fusion line is increased by 7%.The 180°bending tests for the joints of CWW CO2 gas shielded welding and SAW are all qualified,and the joints hardness is all less than HV 355,but hardness of CWW CO2gas shielded welding wire welding joint near the fusion line is obviously lower.It can be concluded that the properties of CWW CO2gas shielded welding are better than those of the SAW joint,and CWW CO2gas shielded welding is suitable for welding high strength steel A36used in ship structure.
基金the National Basic Research Program(973) of China (No.2007CB613802)
文摘The performance of vacuum arc remelting (VAR) ingot depends largely on ingot structure and chemical uniformity,which are strongly influenced by molten pool profile that is influenced by VAR process.To better understand the effect of remelting current on molten pool profile of titanium alloy ingot during VAR process,a 3D finite element model is developed by the ANSYS software.The results show that there are three remelting stages during VAR process when the remelting current is 2.0 kA.The molten pool depth increases gradually from 30 to 320 s,then the change of molten pool depth is very small during the steady state stage from 320 to 386 s,and lastly the molten pool depth becomes shallow after 386 s.The melting rate and temperature of superheat increase with the remelting current increasing,which leads to the augment of molten pool volume.In the end,the total remelting time and steady state molten pool time decrease with the melting current from 1.6 to 2.8 kA.