本文受到SICA(smooth integration of counting and absolute deviation)方法的启发,提出一族基于反正切函数的非凸罚函数Arctan LASSO(Arctangent least absolute shrinkage and selection operator),该罚函数可以进行参数估计和变量选...本文受到SICA(smooth integration of counting and absolute deviation)方法的启发,提出一族基于反正切函数的非凸罚函数Arctan LASSO(Arctangent least absolute shrinkage and selection operator),该罚函数可以进行参数估计和变量选取,而且提供了一种有效的平滑方法从L_0过渡到L_1罚函数,渐近性质表明Arctan LASSO估计量具有n^(1/2)相合性和oracle性质.本文结合LLA(local linear approximation)和坐标下降法给出一种有效的迭代算法,并且基于BIC(Bayesian information criterion)准则选出合适的正则化参数.模拟数据分析显示Arctan LASSO在估计精度和变量选取方面有较好的表现,估计效果类似于SICA,而且通常优于LASSO、SCAD(smoothly clipped absolute deviation)、MCP(minimax concave penalty)和自适应LASSO.该方法在实际数据中可以用于变量选取的研究,具有重要的实际意义.展开更多
在数字图像处理和机器视觉中,边缘检测是一个基本问题和关键环节,因此,精确地检测图像边缘是非常必要的。提出了一种基于灰度梯度和反正切函数拟合的亚像素边缘检测算法。首先,通过Canny算子粗略提取输入图像的边缘;然后对初步得到的边...在数字图像处理和机器视觉中,边缘检测是一个基本问题和关键环节,因此,精确地检测图像边缘是非常必要的。提出了一种基于灰度梯度和反正切函数拟合的亚像素边缘检测算法。首先,通过Canny算子粗略提取输入图像的边缘;然后对初步得到的边缘像素逐点提取灰度梯度方向,以提取的梯度方向为坐标轴正方向建立灰度梯度直角坐标系;最后利用最小二乘法,采用反正切函数拟合图像边缘的灰度梯度,获得亚像素边缘位置。利用Microsoft Visual Studio 2008平台进行实验,结果表明:与基于小波变换及基于Zernike矩的亚像素边缘检测方法相比,所提算法定位精度较高,检测速度较快,能够更完整地检测出图像的平滑边缘。展开更多
文摘本文受到SICA(smooth integration of counting and absolute deviation)方法的启发,提出一族基于反正切函数的非凸罚函数Arctan LASSO(Arctangent least absolute shrinkage and selection operator),该罚函数可以进行参数估计和变量选取,而且提供了一种有效的平滑方法从L_0过渡到L_1罚函数,渐近性质表明Arctan LASSO估计量具有n^(1/2)相合性和oracle性质.本文结合LLA(local linear approximation)和坐标下降法给出一种有效的迭代算法,并且基于BIC(Bayesian information criterion)准则选出合适的正则化参数.模拟数据分析显示Arctan LASSO在估计精度和变量选取方面有较好的表现,估计效果类似于SICA,而且通常优于LASSO、SCAD(smoothly clipped absolute deviation)、MCP(minimax concave penalty)和自适应LASSO.该方法在实际数据中可以用于变量选取的研究,具有重要的实际意义.
文摘在数字图像处理和机器视觉中,边缘检测是一个基本问题和关键环节,因此,精确地检测图像边缘是非常必要的。提出了一种基于灰度梯度和反正切函数拟合的亚像素边缘检测算法。首先,通过Canny算子粗略提取输入图像的边缘;然后对初步得到的边缘像素逐点提取灰度梯度方向,以提取的梯度方向为坐标轴正方向建立灰度梯度直角坐标系;最后利用最小二乘法,采用反正切函数拟合图像边缘的灰度梯度,获得亚像素边缘位置。利用Microsoft Visual Studio 2008平台进行实验,结果表明:与基于小波变换及基于Zernike矩的亚像素边缘检测方法相比,所提算法定位精度较高,检测速度较快,能够更完整地检测出图像的平滑边缘。