The demand of further increasing bypass ratio of aeroengine will lead to low pressure turbines with higher diameter. Therefore, it is necessary to design a duct to guide the hot gas flow which is expelled from the ups...The demand of further increasing bypass ratio of aeroengine will lead to low pressure turbines with higher diameter. Therefore, it is necessary to design a duct to guide the hot gas flow which is expelled from the upstream high pressure (HP) turbine stage to the downstream low pressure (LP) turbine stage. Named by its position, this kind of duct is always called intermediate turbine ducts (ITDs). Due to the pursuit of higher thrust ratio of the aeroengine, this kind of ITDs has to beas short as possible which leads to aggressive (high diffusion) S-shaped ITDs' geometry. In this paper, two different schemes of high diffusion separation-free S-shaped ITDs were studied with the aid of three-dimensional CFD programs. Although these two ITDs have the same area ratios (AR), because of the different duct length, they have totally different area as well as area change rates. With the detailed calculation results, comparisons were made to investigate the underneath physical mechanisms. Additionally, a direct estimation of the ITDs' loss is given at the end of this paper and some ITDs' novel design idea is proposed to initiate some further discussions.展开更多
文摘The demand of further increasing bypass ratio of aeroengine will lead to low pressure turbines with higher diameter. Therefore, it is necessary to design a duct to guide the hot gas flow which is expelled from the upstream high pressure (HP) turbine stage to the downstream low pressure (LP) turbine stage. Named by its position, this kind of duct is always called intermediate turbine ducts (ITDs). Due to the pursuit of higher thrust ratio of the aeroengine, this kind of ITDs has to beas short as possible which leads to aggressive (high diffusion) S-shaped ITDs' geometry. In this paper, two different schemes of high diffusion separation-free S-shaped ITDs were studied with the aid of three-dimensional CFD programs. Although these two ITDs have the same area ratios (AR), because of the different duct length, they have totally different area as well as area change rates. With the detailed calculation results, comparisons were made to investigate the underneath physical mechanisms. Additionally, a direct estimation of the ITDs' loss is given at the end of this paper and some ITDs' novel design idea is proposed to initiate some further discussions.