期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Integral Performance Criteria Based Analysis of Load Frequency Control in Bilateral Based Market
1
作者 P. Anitha P. Subburaj 《Circuits and Systems》 2016年第6期1021-1032,共12页
Performance index based analysis is made to examine and highlight the effective application of Particle Swarm Optimization (PSO) to optimize the Proportional Integral gains for Load Frequency Control (LFC) in a restru... Performance index based analysis is made to examine and highlight the effective application of Particle Swarm Optimization (PSO) to optimize the Proportional Integral gains for Load Frequency Control (LFC) in a restructured power system that operates under Bilateral based policy scheme. Various Integral Performance Criteria measures are taken as fitness function in PSO and are compared using overshoot, settling time and frequency and tie-line power deviation following a step load perturbation (SLP). The motivation for using different fitness technique in PSO is to show the behavior of the controller for a wide range of system parameters and load changes. Error based analysis with parametric uncertainties and load changes are tested on a two-area restructured power system. The results of the proposed PSO based controller show the better performance compared to the classical Ziegler-Nichols (Z-N) tuned PI and Fuzzy Rule based PI controller. 展开更多
关键词 Load Frequency Control Particle Swarm Optimization Bilateral Market area Control Error Fuzzy Rule Based PI Controller Parametric Uncertainties
下载PDF
Real-time vehicle-to-grid control for frequency regulation with high frequency regulating signal 被引量:4
2
作者 H.Liu K.Huang +2 位作者 Y.Yang H.Wei S.Ma 《Protection and Control of Modern Power Systems》 2018年第1期151-158,共8页
The large-scale popularization of electric vehicles(EVs)brings the potential for grid frequency regulation.Considering the characteristics of fast response and adjustment of EVs,two control strategies of automatic gen... The large-scale popularization of electric vehicles(EVs)brings the potential for grid frequency regulation.Considering the characteristics of fast response and adjustment of EVs,two control strategies of automatic generation control(AGC)with EVs are proposed responding to two high frequency regulating signals extracted from area control error(ACE)and area regulation requirement(ARR)by a digital filter,respectively.In order to dispatch regulation task to EVs,the capacity of regulation is calculated based on maximum V2G power and the present V2G power of EVs.Finally,simulations based on a two-area interconnected power system show that the proposed approaches can significantly suppress frequency deviation and reduce the active power output of traditional generation units. 展开更多
关键词 area control error(ACE) Automatic generation control(AGC) Electric vehicle Frequency regulation High frequency regulating signal
原文传递
An Interactive Operating Demand Response Approach for Hybrid Power Systems Integrating Renewable Energy Sources
3
作者 Abhishek Saxena Ravi Shankar 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第3期174-194,共21页
The increased deployment of renewable energy in existing power networks has jeopardized rotational inertia,resulting in system degradation and insta-bility.To address the issue,this paper proposes a demand response st... The increased deployment of renewable energy in existing power networks has jeopardized rotational inertia,resulting in system degradation and insta-bility.To address the issue,this paper proposes a demand response strategy for ensuring the future reliability of the electrical power system.In addition,a modified fuzzy logic control topology-based two-degree-of-freedom(fractional order proportional integral)-tilt derivative controller is designed to regulate the frequency within a demand response framework of a hybrid two-area deregulated power system.The test system includes thermal power plants,renewable energy sources(such as wind,parabolic trough solar thermal plant,biogas),and electric vehicle assets.To adaptively tune the controller’s coefficients,a quasi-opposition-based harris hawks optimization(QOHHO)algorithm is developed.The effectiveness of this algorithm is compared to other optimization algorithms,and the stability of the system is evaluated.The results demonstrate that the designed control algorithm significantly enhances system frequency stability in various scenarios,including uncertainties,physical constraints,and high penetration of renewables,compared to existing work.Additionally,an experimental assessment through OPAL-RT is conducted to verify the practicality of the proposed strategy,considering source and load intermittencies. 展开更多
关键词 area control error demand response energy storage vertically integrated utility
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部