Wireless sensor networks (WSNs) are important application for safety monitoring in underground coal mines, which are difficult to monitor due to natural conditions. Based on the characteristic of limited energy for WS...Wireless sensor networks (WSNs) are important application for safety monitoring in underground coal mines, which are difficult to monitor due to natural conditions. Based on the characteristic of limited energy for WSNs in confined underground area such as coal face and laneway, we presents an energy- efficient clustering routing protocol based on weight (ECRPW) to prolong the lifetime of networks. ECRPW takes into consideration the nodes' residual energy during the election process of cluster heads. The constraint of distance threshold is used to optimize cluster scheme. Furthermore, the protocol also sets up a routing tree based on cluster heads' weight. The results show that ECRPW had better perfor- mance in energy consumption, death ratio of node and network lifetime.展开更多
This paper develops a general and tractable framework for the finite-sized downlink terahertz(THz)network.Specifically,the molecular absorption loss,receiver locations,directional antennas,and dynamic blockage are tak...This paper develops a general and tractable framework for the finite-sized downlink terahertz(THz)network.Specifically,the molecular absorption loss,receiver locations,directional antennas,and dynamic blockage are taken into account.Using the tools from stochastic geometry,the exact expressions of the blind probability,signal-to-interference-plus-noise ratio(SINR)coverage probability,and area spectral efficiency(ASE)for the reference receivers and random receivers are derived.The upper bounds of the SINR coverage probability are also obtained by using the generalized dominant interferers approach.Numerical results validate the accuracy of our theoretical analysis and suggest that two or more dominant interferers are required to provide sufficiently tight approximations for the SINR coverage probability.We also show that densifying the finite terahertz networks over a certain density threshold will degrade the coverage probability while the ASE keeps increasing.Moreover,deploying more obstructions appropriately in ultra-dense THz networks will benefit both the coverage probability and ASE.展开更多
The ultra-dense network is a promising technology to increase the network capacity in the forthcoming fifthgeneration(5G)mobile communication networks by deploying lots of low power Small Base Stations(SBSs)which over...The ultra-dense network is a promising technology to increase the network capacity in the forthcoming fifthgeneration(5G)mobile communication networks by deploying lots of low power Small Base Stations(SBSs)which overlap with Macro Base Stations(MBSs).The interference and energy consumption increase rapidly with the number of SBSs although each SBS transmits with small power.In this paper,we model a downlink heterogeneous ultra-dense network where a lot of SBSs are randomly deployed with MBSs based on the Poisson point process.We derive the coverage probability and its variance,and analyze the area spectral efficiency and energy efficiency of the network considering three Fractional Power Control(FPC)strategies.The numerical results and Monte Carlo simulation results show that power control can mitigate the interference and balance the performances of inner-user and edge-user equipments.Especially,a great improvement of energy efficiency is archived with a little loss of area spectral efficiency when FPC is adopted.Finally,we analyze the effect of base stations’(BSs’)sleeping on the performance of the network when it is partially loaded.展开更多
The standardized IEEE ,802. II distributed coordination function ( DCF) provides a contention-based distributed channel access mechanism for mobile stations to share the wireless medium. However, when stations are m...The standardized IEEE ,802. II distributed coordination function ( DCF) provides a contention-based distributed channel access mechanism for mobile stations to share the wireless medium. However, when stations are mobile or portable units, power consumption becomes a primary issue since terminals are usually battery driven. This paper proposes an analytical model that calculates the energy efficiency of both the basic and the RTS/CTS access mechanisms of the IEEE 802. II protocol. The model is validated with simulation results using NS-2 simulation package. The effects of the network size, the average packet length, the initial contention window and maximum backoff stages on the energy efficiency of both access mechanisms are also investigated. Results show that the basic scheme has low energy efficiency at large packet length and large network size, and depends strongly on the number of stations and the backoff procedure parameters. Conversely, the RTS/CTS mechanism provides higher energy efficiency when the network size is large, and is more robust to variations in the backoff procedure parameters.展开更多
The coexistence of wireless body sensor networks(WBSNs) is a very challenging problem, due to strong interference, which seriously affects energy consumption and spectral reuse. The energy efficiency and spectral effi...The coexistence of wireless body sensor networks(WBSNs) is a very challenging problem, due to strong interference, which seriously affects energy consumption and spectral reuse. The energy efficiency and spectral efficiency are two key performance evaluation metrics for wireless communication networks. In this paper, the fundamental tradeoff between energy efficiency and area spectral efficiency of WBSNs is first investigated under the Poisson point process(PPP) model and Matern hard-core point process(HCPP) model using stochastic geometry. The circuit power consumption is taken into consideration in energy efficiency calculation. The tradeoff judgement coefficient is developed and is shown to serve as a promising complementary measure. In addition, this paper proposes a new nearest neighbour distance power control strategy to improve energy efficiency. We show that there exists an optimal transmit power highly dependant on the density of WBSNs and the nearest neighbour distance. Some important properties are also addressed in the analysis of coexisting WBSNs based on the IEEE 802.15.4 standard, such as the impact of intensity nodes distribution,optimal guard zone, and outage probability. Simulation results show that the proposed power control design can reduce the outage probability and enhance energy efficiency. Energy efficiency and area spectral efficiency of the HCPP model are better than those of the PPP model. In addition, the optimal density of WBSNs coexistence is obtained.展开更多
基金supports provided by the National Natural Science Foundation of China (No.50904070)the China Postdoctoral Science Foundation (No.20100471009)+2 种基金the National High Technology Research and Development Program of China (Nos. 2008AA062200 and2007AA01Z180)the Key Project of Jiangsu (No. BG2007012)the Science Foundation of China University of Mining and Technology (No. OC080303)
文摘Wireless sensor networks (WSNs) are important application for safety monitoring in underground coal mines, which are difficult to monitor due to natural conditions. Based on the characteristic of limited energy for WSNs in confined underground area such as coal face and laneway, we presents an energy- efficient clustering routing protocol based on weight (ECRPW) to prolong the lifetime of networks. ECRPW takes into consideration the nodes' residual energy during the election process of cluster heads. The constraint of distance threshold is used to optimize cluster scheme. Furthermore, the protocol also sets up a routing tree based on cluster heads' weight. The results show that ECRPW had better perfor- mance in energy consumption, death ratio of node and network lifetime.
基金National Natural Science Foundation of China(No.61771054).
文摘This paper develops a general and tractable framework for the finite-sized downlink terahertz(THz)network.Specifically,the molecular absorption loss,receiver locations,directional antennas,and dynamic blockage are taken into account.Using the tools from stochastic geometry,the exact expressions of the blind probability,signal-to-interference-plus-noise ratio(SINR)coverage probability,and area spectral efficiency(ASE)for the reference receivers and random receivers are derived.The upper bounds of the SINR coverage probability are also obtained by using the generalized dominant interferers approach.Numerical results validate the accuracy of our theoretical analysis and suggest that two or more dominant interferers are required to provide sufficiently tight approximations for the SINR coverage probability.We also show that densifying the finite terahertz networks over a certain density threshold will degrade the coverage probability while the ASE keeps increasing.Moreover,deploying more obstructions appropriately in ultra-dense THz networks will benefit both the coverage probability and ASE.
基金the Major Program of the National Nature Science Foundation of China(Grant No.61831004).
文摘The ultra-dense network is a promising technology to increase the network capacity in the forthcoming fifthgeneration(5G)mobile communication networks by deploying lots of low power Small Base Stations(SBSs)which overlap with Macro Base Stations(MBSs).The interference and energy consumption increase rapidly with the number of SBSs although each SBS transmits with small power.In this paper,we model a downlink heterogeneous ultra-dense network where a lot of SBSs are randomly deployed with MBSs based on the Poisson point process.We derive the coverage probability and its variance,and analyze the area spectral efficiency and energy efficiency of the network considering three Fractional Power Control(FPC)strategies.The numerical results and Monte Carlo simulation results show that power control can mitigate the interference and balance the performances of inner-user and edge-user equipments.Especially,a great improvement of energy efficiency is archived with a little loss of area spectral efficiency when FPC is adopted.Finally,we analyze the effect of base stations’(BSs’)sleeping on the performance of the network when it is partially loaded.
文摘The standardized IEEE ,802. II distributed coordination function ( DCF) provides a contention-based distributed channel access mechanism for mobile stations to share the wireless medium. However, when stations are mobile or portable units, power consumption becomes a primary issue since terminals are usually battery driven. This paper proposes an analytical model that calculates the energy efficiency of both the basic and the RTS/CTS access mechanisms of the IEEE 802. II protocol. The model is validated with simulation results using NS-2 simulation package. The effects of the network size, the average packet length, the initial contention window and maximum backoff stages on the energy efficiency of both access mechanisms are also investigated. Results show that the basic scheme has low energy efficiency at large packet length and large network size, and depends strongly on the number of stations and the backoff procedure parameters. Conversely, the RTS/CTS mechanism provides higher energy efficiency when the network size is large, and is more robust to variations in the backoff procedure parameters.
基金supported by EPSRC TOUCAN Project (Grant No. EP/L020009/1)EU FP7 QUICK Project (Grant No. PIRSES-GA-2013-612652)+3 种基金EU H2020 ITN 5G Wireless Project (Grant No. 641985)National Natural Science Foundation of China (Grant Nos. 61210002, 61401256)MOST 863 Project in 5G (Grant No. 2014AA01A701)International S&T Cooperation Program of China (Grant No. 2014DFA11640)
文摘The coexistence of wireless body sensor networks(WBSNs) is a very challenging problem, due to strong interference, which seriously affects energy consumption and spectral reuse. The energy efficiency and spectral efficiency are two key performance evaluation metrics for wireless communication networks. In this paper, the fundamental tradeoff between energy efficiency and area spectral efficiency of WBSNs is first investigated under the Poisson point process(PPP) model and Matern hard-core point process(HCPP) model using stochastic geometry. The circuit power consumption is taken into consideration in energy efficiency calculation. The tradeoff judgement coefficient is developed and is shown to serve as a promising complementary measure. In addition, this paper proposes a new nearest neighbour distance power control strategy to improve energy efficiency. We show that there exists an optimal transmit power highly dependant on the density of WBSNs and the nearest neighbour distance. Some important properties are also addressed in the analysis of coexisting WBSNs based on the IEEE 802.15.4 standard, such as the impact of intensity nodes distribution,optimal guard zone, and outage probability. Simulation results show that the proposed power control design can reduce the outage probability and enhance energy efficiency. Energy efficiency and area spectral efficiency of the HCPP model are better than those of the PPP model. In addition, the optimal density of WBSNs coexistence is obtained.