In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Prec...In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Precipitation(CHNIP).During the year 2005 and 2006, monthly precipitation samples have been collected and analyzed for the composition of δD and δ18O.The established local meteoric water line δD=7.42δ18O+1.38, based on the 95 obtained monthly composite samples, could be treated as isotopic input function across the region.The deviations of slope and intercept from the Global Meteoric Water Line indicated the specific regional meteorological conditions.The monthly δ18O values were characterized by a positive correlation with surface air temperature(δ18O(‰) =0.33 T(℃)-13.12).The amount effect visualized during summer period(δ18O(‰) =-0.04P(mm)-3.44) though not appeared at a whole yearly-scale.Spatial distributions of δ18O have properly portrayed the atmospheric circulation background in each month over Arid Northwestern China.The quan-titative simulation of δ18O, which involved a Rayleigh fractionation and a kinetic fractionation, demonstrated that the latter one was the dominating function of condensation of raindrops.Furthermore, the raindrop suffered a re-evaporation during falling processes, and the precipitation vapor might have been mixed with a quantity of local recycled water vapor.Multiple linear regression equations and a δ18O-T relation have been gained by using meteorological parameters and δ18O data to evaluate physical controls on the long-term data.The established δ18O-T relation, which has been based on the present-day precipitation, could be considered as a first step of quantitatively reconstructing the historical environmental climate.展开更多
In the arid region of northwestern China(ARNC),water resources are the most critical factor restricting socioeconomic development and influencing the stability of the area’s ecological systems.The region’s complex w...In the arid region of northwestern China(ARNC),water resources are the most critical factor restricting socioeconomic development and influencing the stability of the area’s ecological systems.The region’s complex water system and unique hydrological cycle show distinctive characteristics.Moreover,the intensified hydrological cycle and extreme climatic and hydrological events resulting from global warming have led to increased uncertainty around water resources as well as heightened conflict between water supply and water demand.All of these factors are exerting growing pressures on the socioeconomic development and vulnerable ecological environment in the region.This research evaluates the impacts of climate change on water resources,hydrological processes,agricultural system,and desert ecosystems in the ARNC,and addresses some associated risks and challenges specific to this area.The temperature is rising at a rate of 0.31C per decade during 1961–2017 and hydrological processes are being significantly influenced by changes in glaciers,snow cover,and precipitation form,especially in the rivers recharged primarily by melt water.Ecosystems are also largely influenced by climate change,with the Normalized Difference Vegetation Index(NDVI)of natural vegetation exhibited an increasing trend prior to 1998,and then reversed in Xinjiang while the Hexi Corridor of Gansu showed the opposite trends.Furthermore,the desert-oasis transition zone showed a reduction in area due to the warming trend and the recent rapid expansion of irrigated area.Both the warming and intensified drought are threatening agriculture security.The present study could shed light on sustainable development in this region under climate change and provides scientific basis to the construction of the“Silk Road Economic Belt”.展开更多
Paleomagnetic determinations on lithological profiles of two paralleled[( )-275(long )]drilling cores covering the past 130 kyr B.P., GT40 and GT60, from the Yanchi Playa in the arid Northwestern China, indicate that ...Paleomagnetic determinations on lithological profiles of two paralleled[( )-275(long )]drilling cores covering the past 130 kyr B.P., GT40 and GT60, from the Yanchi Playa in the arid Northwestern China, indicate that a series of pronounced paleomagnetic excursions have been documented. By correlating our results with published regional and worldwide reports, 4 excursion events out of 10 apparent reversal signals (labeled from GT-1 to GT-10) were identified as excursion events coeval with the Mono Lake Event ([(28.4)( )]kyr~[(25.8)( )]kyr), Laschamp Event ([(43.3)( )]kyr^40.5 kyr), Gaotai Event (82.8 kyr~[(72.4)25( )]kyr) and the Blake Event (127.4 kyr^113.3 kyr), respectively. GT-9 correlates with the above-mentioned Gaotai Event, GT-7 and GT-6 correspond to two stages of the Laschamp Event and GT-5 to the Mono Lake Event. It is noteworthy that the so-called Gaotai Event has not been reported as a pronounced paleomagnetic excursion in the Northwestern China. Every magnetic excursion event corresponds to paleointensity minima, anteceding those established abrupt paleoclimatic change events, such as the Younger Drays and the Heinrich Events (H1-H6)[(. )-250( )]Here,[( )-250( )]we tentatively[( )-250( )]propose that these geomagnetic excursions/reversals can be viewed as precursors to climate abruptness. During the transitional stages when the earths magnetic field shifted between a temporal normal and a negative period, the earths magnetic paleointensity fell correspondingly to a pair of minima. Although more precise chronology and more convincing rock magnetic parameter determinations are essentially required for further interpretation of their intricate coupling mechanism, these results may have revealed, to some extent, that the earths incessantly changing magnetic field exerts an strong influence on the onset of saw-tooth shaped abrupt climate oscillations through certain feedback chains in arid Central Asia or even North Hemispheric high latitude regions.展开更多
Water demand increases continuously with an increasing population and economic development. As a result, the difference between water supply and demand becomes a sig- nificant issue, especially in arid regions. To fig...Water demand increases continuously with an increasing population and economic development. As a result, the difference between water supply and demand becomes a sig- nificant issue, especially in arid regions. To figure out the utilization of water resources in the arid region of northwestern China (ARNWC), and also to provide methodologies to predict the water use in future, three models were established in this study to calculate agricultural irri- gation, industrial and domestic water use in the ARNWC from the late 1980s to 2010. Based on river discharges in the region, the supply and demand of water resources at the river basin level were analyzed. The results indicated that agricultural irrigation demand occupies more than 90% of the total water use in the ARNWC. Total water demand increased from 31.97 km3 in the late 1980s to 48.19 km3 in 2010. Most river basins in this arid region were under me- dium and high water stress. Severe-risk river basins, such as the Shiyang river basin and the eastern part of the northern piedmont of the Tianshan Mountains, were found in this region. It was revealed that the water supply became critical from April to May, which was the season of the lowest water supply as determined by comparing monthly water consumption.展开更多
基金National Natural Science Foundation of China,No.40830636 No.40671034Foundation of Isotopes in Precipitation of Chinese Ecosystem Research Network
文摘In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Precipitation(CHNIP).During the year 2005 and 2006, monthly precipitation samples have been collected and analyzed for the composition of δD and δ18O.The established local meteoric water line δD=7.42δ18O+1.38, based on the 95 obtained monthly composite samples, could be treated as isotopic input function across the region.The deviations of slope and intercept from the Global Meteoric Water Line indicated the specific regional meteorological conditions.The monthly δ18O values were characterized by a positive correlation with surface air temperature(δ18O(‰) =0.33 T(℃)-13.12).The amount effect visualized during summer period(δ18O(‰) =-0.04P(mm)-3.44) though not appeared at a whole yearly-scale.Spatial distributions of δ18O have properly portrayed the atmospheric circulation background in each month over Arid Northwestern China.The quan-titative simulation of δ18O, which involved a Rayleigh fractionation and a kinetic fractionation, demonstrated that the latter one was the dominating function of condensation of raindrops.Furthermore, the raindrop suffered a re-evaporation during falling processes, and the precipitation vapor might have been mixed with a quantity of local recycled water vapor.Multiple linear regression equations and a δ18O-T relation have been gained by using meteorological parameters and δ18O data to evaluate physical controls on the long-term data.The established δ18O-T relation, which has been based on the present-day precipitation, could be considered as a first step of quantitatively reconstructing the historical environmental climate.
基金supported by the National Key Research and Development Program(2019YFA0606902)the National Natural Science Foundation of China(U1903208)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019431).
文摘In the arid region of northwestern China(ARNC),water resources are the most critical factor restricting socioeconomic development and influencing the stability of the area’s ecological systems.The region’s complex water system and unique hydrological cycle show distinctive characteristics.Moreover,the intensified hydrological cycle and extreme climatic and hydrological events resulting from global warming have led to increased uncertainty around water resources as well as heightened conflict between water supply and water demand.All of these factors are exerting growing pressures on the socioeconomic development and vulnerable ecological environment in the region.This research evaluates the impacts of climate change on water resources,hydrological processes,agricultural system,and desert ecosystems in the ARNC,and addresses some associated risks and challenges specific to this area.The temperature is rising at a rate of 0.31C per decade during 1961–2017 and hydrological processes are being significantly influenced by changes in glaciers,snow cover,and precipitation form,especially in the rivers recharged primarily by melt water.Ecosystems are also largely influenced by climate change,with the Normalized Difference Vegetation Index(NDVI)of natural vegetation exhibited an increasing trend prior to 1998,and then reversed in Xinjiang while the Hexi Corridor of Gansu showed the opposite trends.Furthermore,the desert-oasis transition zone showed a reduction in area due to the warming trend and the recent rapid expansion of irrigated area.Both the warming and intensified drought are threatening agriculture security.The present study could shed light on sustainable development in this region under climate change and provides scientific basis to the construction of the“Silk Road Economic Belt”.
基金This work is funded by the National Natural Science Foundation of China(NSFC Grant No.94731010).
文摘Paleomagnetic determinations on lithological profiles of two paralleled[( )-275(long )]drilling cores covering the past 130 kyr B.P., GT40 and GT60, from the Yanchi Playa in the arid Northwestern China, indicate that a series of pronounced paleomagnetic excursions have been documented. By correlating our results with published regional and worldwide reports, 4 excursion events out of 10 apparent reversal signals (labeled from GT-1 to GT-10) were identified as excursion events coeval with the Mono Lake Event ([(28.4)( )]kyr~[(25.8)( )]kyr), Laschamp Event ([(43.3)( )]kyr^40.5 kyr), Gaotai Event (82.8 kyr~[(72.4)25( )]kyr) and the Blake Event (127.4 kyr^113.3 kyr), respectively. GT-9 correlates with the above-mentioned Gaotai Event, GT-7 and GT-6 correspond to two stages of the Laschamp Event and GT-5 to the Mono Lake Event. It is noteworthy that the so-called Gaotai Event has not been reported as a pronounced paleomagnetic excursion in the Northwestern China. Every magnetic excursion event corresponds to paleointensity minima, anteceding those established abrupt paleoclimatic change events, such as the Younger Drays and the Heinrich Events (H1-H6)[(. )-250( )]Here,[( )-250( )]we tentatively[( )-250( )]propose that these geomagnetic excursions/reversals can be viewed as precursors to climate abruptness. During the transitional stages when the earths magnetic field shifted between a temporal normal and a negative period, the earths magnetic paleointensity fell correspondingly to a pair of minima. Although more precise chronology and more convincing rock magnetic parameter determinations are essentially required for further interpretation of their intricate coupling mechanism, these results may have revealed, to some extent, that the earths incessantly changing magnetic field exerts an strong influence on the onset of saw-tooth shaped abrupt climate oscillations through certain feedback chains in arid Central Asia or even North Hemispheric high latitude regions.
基金National Key Project on Basic Research(973),No.2010CB951003The National Science and Technology Project,No.2014BAD10B06
文摘Water demand increases continuously with an increasing population and economic development. As a result, the difference between water supply and demand becomes a sig- nificant issue, especially in arid regions. To figure out the utilization of water resources in the arid region of northwestern China (ARNWC), and also to provide methodologies to predict the water use in future, three models were established in this study to calculate agricultural irri- gation, industrial and domestic water use in the ARNWC from the late 1980s to 2010. Based on river discharges in the region, the supply and demand of water resources at the river basin level were analyzed. The results indicated that agricultural irrigation demand occupies more than 90% of the total water use in the ARNWC. Total water demand increased from 31.97 km3 in the late 1980s to 48.19 km3 in 2010. Most river basins in this arid region were under me- dium and high water stress. Severe-risk river basins, such as the Shiyang river basin and the eastern part of the northern piedmont of the Tianshan Mountains, were found in this region. It was revealed that the water supply became critical from April to May, which was the season of the lowest water supply as determined by comparing monthly water consumption.