The effects of human activities on the soil cover transformation in the eastern part of Kazakhstan were investigated during the period of 1956-2008.The results of the research for different soil types in Priaralye ind...The effects of human activities on the soil cover transformation in the eastern part of Kazakhstan were investigated during the period of 1956-2008.The results of the research for different soil types in Priaralye indicated that there was 643.3×103 hm2 solonchaks,accounting for 38.5 % of the total area(1670.5×10^3 hm^2) in 2008.Vast areas are occupied with dried lakeshore soil(311.1× 10^3 hm^2),sandy soils(147.6×10^3 hm^2) and grey-brown desert soils and solonetzes(146.7×10^3 hm^2).In 2001 the area of solonchak was 755×103 hm2 and decreased to 643.3×10^3 hm^2 in 2008,which due to the shrinkage of the Aral Sea,the areas of marsh and lakeshore solonchaks decreased with the increase of dried bottom of the Aral Sea.The level of soil cover transformation in the modern delta of the Syr-Darya River can be seen from the comparison of the results obtained from the different years in the study area.The area of solonchaks increased by 10×10^3 hm^2 and the area of alluvial-meadow salinizied soils increased by 17.9×10^3 hm^2 during the period of 1956-1969.It means that many non-salinizied soils were transformed into salinizied ones.Striking changes occurred in the structure of soil cover as a result of aridization.So,the researches in1969 significantly determined the areas of hydromorphic soils subjected to desertification(it was not fixed on the map before 1956).Later,these soils were transformed into takyr-like soils.The area of takyr-like soils increased almost by 3 times for 34 years(from 1956 to 1990).The long-term soil researches on soil cover transformation in Priaralye have shown that the tendencies of negative processes(salinization and deflation) are being kept and lead to further soil and eco-environment degradation in the region.展开更多
植被生物量是全球碳循环的重要组成部分,是陆地生态系统与大气之间碳交换的重要环节,是定量研究全球气候变化与草地、荒漠生态系统之间的反馈调节作用等的基础。中国干旱半干旱区的草地、荒漠生态系统是重要的碳库类型,本文选取中国生...植被生物量是全球碳循环的重要组成部分,是陆地生态系统与大气之间碳交换的重要环节,是定量研究全球气候变化与草地、荒漠生态系统之间的反馈调节作用等的基础。中国干旱半干旱区的草地、荒漠生态系统是重要的碳库类型,本文选取中国生态系统研究网络(Chinese Ecosystem Research Network,CERN)中位于中国干旱半干旱区的2个草地生态系统观测研究站(海北站、内蒙古站)和5个荒漠生态系统类型观测研究站(鄂尔多斯站、阜康站、临泽站、奈曼站、沙坡头站)的典型生态系统,对其按照CERN生态系统长期观测规范开展长期观测获取的植被地上生物量的2005–2020年间生长季的月动态实测数据进行了收集整理与质量控制,并开展了样方原始调查数据到样地尺度观测数据的统计计算,生成了植被地上生物量数据集,可为中国干旱半干旱区草地和荒漠生态系统对全球气候变化响应及植被保育与可持续发展等研究提供地面观测数据支撑。展开更多
基金supported by the Department of Ecology in Kazakh Research Institute of Soil Science and Agrochemistry named after Uspanov,Almaty,Kazakhstan
文摘The effects of human activities on the soil cover transformation in the eastern part of Kazakhstan were investigated during the period of 1956-2008.The results of the research for different soil types in Priaralye indicated that there was 643.3×103 hm2 solonchaks,accounting for 38.5 % of the total area(1670.5×10^3 hm^2) in 2008.Vast areas are occupied with dried lakeshore soil(311.1× 10^3 hm^2),sandy soils(147.6×10^3 hm^2) and grey-brown desert soils and solonetzes(146.7×10^3 hm^2).In 2001 the area of solonchak was 755×103 hm2 and decreased to 643.3×10^3 hm^2 in 2008,which due to the shrinkage of the Aral Sea,the areas of marsh and lakeshore solonchaks decreased with the increase of dried bottom of the Aral Sea.The level of soil cover transformation in the modern delta of the Syr-Darya River can be seen from the comparison of the results obtained from the different years in the study area.The area of solonchaks increased by 10×10^3 hm^2 and the area of alluvial-meadow salinizied soils increased by 17.9×10^3 hm^2 during the period of 1956-1969.It means that many non-salinizied soils were transformed into salinizied ones.Striking changes occurred in the structure of soil cover as a result of aridization.So,the researches in1969 significantly determined the areas of hydromorphic soils subjected to desertification(it was not fixed on the map before 1956).Later,these soils were transformed into takyr-like soils.The area of takyr-like soils increased almost by 3 times for 34 years(from 1956 to 1990).The long-term soil researches on soil cover transformation in Priaralye have shown that the tendencies of negative processes(salinization and deflation) are being kept and lead to further soil and eco-environment degradation in the region.
文摘植被生物量是全球碳循环的重要组成部分,是陆地生态系统与大气之间碳交换的重要环节,是定量研究全球气候变化与草地、荒漠生态系统之间的反馈调节作用等的基础。中国干旱半干旱区的草地、荒漠生态系统是重要的碳库类型,本文选取中国生态系统研究网络(Chinese Ecosystem Research Network,CERN)中位于中国干旱半干旱区的2个草地生态系统观测研究站(海北站、内蒙古站)和5个荒漠生态系统类型观测研究站(鄂尔多斯站、阜康站、临泽站、奈曼站、沙坡头站)的典型生态系统,对其按照CERN生态系统长期观测规范开展长期观测获取的植被地上生物量的2005–2020年间生长季的月动态实测数据进行了收集整理与质量控制,并开展了样方原始调查数据到样地尺度观测数据的统计计算,生成了植被地上生物量数据集,可为中国干旱半干旱区草地和荒漠生态系统对全球气候变化响应及植被保育与可持续发展等研究提供地面观测数据支撑。