In some sense, talking about arms control and non-proliferation at the present in East Asia seems unsuitable. Moreover, for the "hawkish" forces in the United States, who are more prominent now than other el...In some sense, talking about arms control and non-proliferation at the present in East Asia seems unsuitable. Moreover, for the "hawkish" forces in the United States, who are more prominent now than other elements in influencing international politics in East Asia, as well as for those people within this broadly defined region.展开更多
International arms control and disarmament has recorded remarkable achieve-ments in recent years in the wake of rapproachment among major powers andoverall detente in the world at large. These remarkable achievements,...International arms control and disarmament has recorded remarkable achieve-ments in recent years in the wake of rapproachment among major powers andoverall detente in the world at large. These remarkable achievements, in theirturn, have propelled the global situation further in the direction favorable to furtherrelaxation of global tension. These mutually reinforcing and supplementary trends,展开更多
About one year on,international arms control and disarmament appeared to be rebounding to become an issue of great international attention,paralleling the issues of financial crisis and climate change.International nu...About one year on,international arms control and disarmament appeared to be rebounding to become an issue of great international attention,paralleling the issues of financial crisis and climate change.International nuclear disarmament re-dawned with high profile readjustments by the United States in its nuclear arms control policy and tactics.The US and Russia signed a new agreement of bilateral nuclear disarmament.Multilateral nuclear arms control has also softened,and the nuclear security issue loomed large.The Conference on the Review of Nuclear Non-proliferation was held,the main illustration of the adjustment by the US to its arms control policy and tactics.On balance,however,the US arms control and disarmament policies remain largely rhetorical,as its two strategic objectives of nuclear weapon policy--nuclear deterrence and non-proliferation--has been kept intact,and even intensified.展开更多
The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual...The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual links, following a fixed(pre-defined) order of link selection. The right(left)hand motor imagery is used to turn a link clockwise(counterclockwise) and foot imagery is used to move a link forward. The occurrence of ErrP here indicates that the link under motion crosses the visually fixed target position, which usually is a plane/line/point depending on the desired transition of the link across 3D planes/around 2D lines/along 2D lines respectively. The imagined task about individual link's movement is decoded by a classifier into three possible class labels: clockwise, counterclockwise and no movement in case of rotational movements and forward, backward and no movement in case of translational movements. One additional classifier is required to detect the occurrence of the ErrP signal, elicited due to visually inspired positional link error with reference to a geometrically selected target position. Wavelet coefficients and adaptive autoregressive parameters are extracted as features for motor imagery and ErrP signals respectively. Support vector machine classifiers are used to decode motor imagination and ErrP with high classification accuracy above 80%. The average time taken by the proposed scheme to decode and execute control intentions for the complete movement of three links of a robot is approximately33 seconds. The steady-state error and peak overshoot of the proposed controller are experimentally obtained as 1.1% and4.6% respectively.展开更多
To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction ...To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction under the direct torque control system of brushless DC motor. First,the arm joint of the humanoid robot is modelled. Then the speed controller model and the influence of the initial value of the integral element on the system are analyzed. On the basis of the traditional antiwindup controller,an integral state estimator is set up. Under the condition of different load torques and the given speed,the integral steady-state value is estimated. Therefore the accumulation of the speed error terminates when the integrator reaches saturation. Then the predicted integral steady-state value is used as the initial value of the regulator to enter the linear region to make the system achieve the purpose of anti-windup. The simulation results demonstrate that the control strategy for the humanoid robot arm joint based on integral state prediction can play the role of anti-windup and suppress the overshoot of the system effectively. The system has a good dynamic performance.展开更多
In our highly globalized but culturally divided world whereby so-called defense industry is implied as both innovative and progressive, as contemporaneously the international legal doctrine is conceived to be static a...In our highly globalized but culturally divided world whereby so-called defense industry is implied as both innovative and progressive, as contemporaneously the international legal doctrine is conceived to be static and conservative. This doubly bound narrative itself is almost as old as international law wherein the most striking contradictory moments happened in the era of, and between two world wars: In such a way that our thinking of legal and other fields owe much more thereto than we realize today. In this study, it is purported to call attention to some key understandings which may be termed as militarist humanitarianism, humanitarian militarism, or, optimist scientism, and pessimist humanitarianism. As such, it is intended to examine international issues pertaining to humanitarianism and militarism through the lens of different perspectives, doctrine-itself and their history as enshrined in the Protocol IV on Blinding Laser Weapons, issues which are almost totally neglected in the mainstream media and academia.展开更多
Bilateral arm raising movements have been used in brain rehabilitation for a long time. However, no study has been reported on the effect of these movements on the cerebral cortex. In this study, using functional near...Bilateral arm raising movements have been used in brain rehabilitation for a long time. However, no study has been reported on the effect of these movements on the cerebral cortex. In this study, using functional near infrared spectroscopy(f NIRS), we attempted to investigate cortical activation generated during bilateral arm raising movements. Ten normal subjects were recruited for this study. f NIRS was performed using an f NIRS system with 49 channels. Bilateral arm raising movements were performed in sitting position at the rate of 0.5 Hz. We measured values of oxyhemoglobin and total hemoglobin in five regions of interest: the primary sensorimotor cortex, premotor cortex, supplementary motor area, prefrontal cortex, and posterior parietal cortex. During performance of bilateral arm raising movements, oxyhemoglobin and total hemoglobin values in the primary sensorimotor cortex, premotor cortex, supplementary motor area, and prefrontal cortex were similar, but higher in these regions than those in the prefrontal cortex. We observed activation of the arm somatotopic areas of the primary sensorimotor cortex and premotor cortex in both hemispheres during bilateral arm raising movements. According to this result, bilateral arm raising movements appeared to induce large-scale neuronal activation and therefore arm raising movements would be good exercise for recovery of brain functions.展开更多
The soft continuum arm has extensive application in industrial production and human life due to its superior safety and flexibility. Reinforcement learning is a powerful technique for solving soft arm continuous contr...The soft continuum arm has extensive application in industrial production and human life due to its superior safety and flexibility. Reinforcement learning is a powerful technique for solving soft arm continuous control problems, which can learn an effective control policy with an unknown system model. However, it is often affected by the high sample complexity and requires huge amounts of data to train, which limits its effectiveness in soft arm control. An improved policy gradient method, policy gradient integrating long and short-term rewards denoted as PGLS, is proposed in this paper to overcome this issue. The shortterm rewards provide more dynamic-aware exploration directions for policy learning and improve the exploration efficiency of the algorithm. PGLS can be integrated into current policy gradient algorithms, such as deep deterministic policy gradient(DDPG). The overall control framework is realized and demonstrated in a dynamics simulation environment. Simulation results show that this approach can effectively control the soft arm to reach and track the targets. Compared with DDPG and other model-free reinforcement learning algorithms, the proposed PGLS algorithm has a great improvement in convergence speed and performance. In addition, a fluid-driven soft manipulator is designed and fabricated in this paper, which can verify the proposed PGLS algorithm in real experiments in the future.展开更多
A novel soft robotic arm(SRA)composed of two soft extensible arms(SEAs)and a soft bendable joint(SBJ)for space capture systems is presented in this paper.A diamond origami pattern was applied in the design of the SEAs...A novel soft robotic arm(SRA)composed of two soft extensible arms(SEAs)and a soft bendable joint(SBJ)for space capture systems is presented in this paper.A diamond origami pattern was applied in the design of the SEAs,and large deformations of the SEAs in positive pressure were simulated using the nonlinear finite element method.A kinematic model of the SRA using the Denavit–Hartenberg method based on the assumption of constant curvatures was proposed.A closed-loop model-free control system based on a PID controller was developed using real-time data from a vision sensor system.The kinematic model and closed-loop model-free control system are experimentally evaluated on an SRA prototype by four experiments.The experimental results demonstrate that the derived kinematic model can finely describe the movement of the SRA and that the closed-loop control system can control the SRA to reach the desired destination or trajectory within an acceptable error and performs well in long-term repeated operations.展开更多
文摘In some sense, talking about arms control and non-proliferation at the present in East Asia seems unsuitable. Moreover, for the "hawkish" forces in the United States, who are more prominent now than other elements in influencing international politics in East Asia, as well as for those people within this broadly defined region.
文摘International arms control and disarmament has recorded remarkable achieve-ments in recent years in the wake of rapproachment among major powers andoverall detente in the world at large. These remarkable achievements, in theirturn, have propelled the global situation further in the direction favorable to furtherrelaxation of global tension. These mutually reinforcing and supplementary trends,
文摘About one year on,international arms control and disarmament appeared to be rebounding to become an issue of great international attention,paralleling the issues of financial crisis and climate change.International nuclear disarmament re-dawned with high profile readjustments by the United States in its nuclear arms control policy and tactics.The US and Russia signed a new agreement of bilateral nuclear disarmament.Multilateral nuclear arms control has also softened,and the nuclear security issue loomed large.The Conference on the Review of Nuclear Non-proliferation was held,the main illustration of the adjustment by the US to its arms control policy and tactics.On balance,however,the US arms control and disarmament policies remain largely rhetorical,as its two strategic objectives of nuclear weapon policy--nuclear deterrence and non-proliferation--has been kept intact,and even intensified.
基金supported by UGC Sponsored UPE-ⅡProject in Cognitive Science of Jadavpur University,Kolkata
文摘The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual links, following a fixed(pre-defined) order of link selection. The right(left)hand motor imagery is used to turn a link clockwise(counterclockwise) and foot imagery is used to move a link forward. The occurrence of ErrP here indicates that the link under motion crosses the visually fixed target position, which usually is a plane/line/point depending on the desired transition of the link across 3D planes/around 2D lines/along 2D lines respectively. The imagined task about individual link's movement is decoded by a classifier into three possible class labels: clockwise, counterclockwise and no movement in case of rotational movements and forward, backward and no movement in case of translational movements. One additional classifier is required to detect the occurrence of the ErrP signal, elicited due to visually inspired positional link error with reference to a geometrically selected target position. Wavelet coefficients and adaptive autoregressive parameters are extracted as features for motor imagery and ErrP signals respectively. Support vector machine classifiers are used to decode motor imagination and ErrP with high classification accuracy above 80%. The average time taken by the proposed scheme to decode and execute control intentions for the complete movement of three links of a robot is approximately33 seconds. The steady-state error and peak overshoot of the proposed controller are experimentally obtained as 1.1% and4.6% respectively.
基金Supported by the National Natural Science Foundation of China(61175090,61703249)Shandong Provincial Natural Science Foundation,China(ZR2017MF045)
文摘To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction under the direct torque control system of brushless DC motor. First,the arm joint of the humanoid robot is modelled. Then the speed controller model and the influence of the initial value of the integral element on the system are analyzed. On the basis of the traditional antiwindup controller,an integral state estimator is set up. Under the condition of different load torques and the given speed,the integral steady-state value is estimated. Therefore the accumulation of the speed error terminates when the integrator reaches saturation. Then the predicted integral steady-state value is used as the initial value of the regulator to enter the linear region to make the system achieve the purpose of anti-windup. The simulation results demonstrate that the control strategy for the humanoid robot arm joint based on integral state prediction can play the role of anti-windup and suppress the overshoot of the system effectively. The system has a good dynamic performance.
文摘In our highly globalized but culturally divided world whereby so-called defense industry is implied as both innovative and progressive, as contemporaneously the international legal doctrine is conceived to be static and conservative. This doubly bound narrative itself is almost as old as international law wherein the most striking contradictory moments happened in the era of, and between two world wars: In such a way that our thinking of legal and other fields owe much more thereto than we realize today. In this study, it is purported to call attention to some key understandings which may be termed as militarist humanitarianism, humanitarian militarism, or, optimist scientism, and pessimist humanitarianism. As such, it is intended to examine international issues pertaining to humanitarianism and militarism through the lens of different perspectives, doctrine-itself and their history as enshrined in the Protocol IV on Blinding Laser Weapons, issues which are almost totally neglected in the mainstream media and academia.
基金supported by the DGIST R&D Program of the Ministry of Science,ICT and Future Planning,No.16-BD-0401
文摘Bilateral arm raising movements have been used in brain rehabilitation for a long time. However, no study has been reported on the effect of these movements on the cerebral cortex. In this study, using functional near infrared spectroscopy(f NIRS), we attempted to investigate cortical activation generated during bilateral arm raising movements. Ten normal subjects were recruited for this study. f NIRS was performed using an f NIRS system with 49 channels. Bilateral arm raising movements were performed in sitting position at the rate of 0.5 Hz. We measured values of oxyhemoglobin and total hemoglobin in five regions of interest: the primary sensorimotor cortex, premotor cortex, supplementary motor area, prefrontal cortex, and posterior parietal cortex. During performance of bilateral arm raising movements, oxyhemoglobin and total hemoglobin values in the primary sensorimotor cortex, premotor cortex, supplementary motor area, and prefrontal cortex were similar, but higher in these regions than those in the prefrontal cortex. We observed activation of the arm somatotopic areas of the primary sensorimotor cortex and premotor cortex in both hemispheres during bilateral arm raising movements. According to this result, bilateral arm raising movements appeared to induce large-scale neuronal activation and therefore arm raising movements would be good exercise for recovery of brain functions.
基金partially supported by the National Key Research and Development Project Monitoring and Prevention of Major Natural Disasters Special Program (Grant No. 2020YFC1512202)the Anhui University Cooperative Innovation Project (Grant No. GXXT-2019-003)
文摘The soft continuum arm has extensive application in industrial production and human life due to its superior safety and flexibility. Reinforcement learning is a powerful technique for solving soft arm continuous control problems, which can learn an effective control policy with an unknown system model. However, it is often affected by the high sample complexity and requires huge amounts of data to train, which limits its effectiveness in soft arm control. An improved policy gradient method, policy gradient integrating long and short-term rewards denoted as PGLS, is proposed in this paper to overcome this issue. The shortterm rewards provide more dynamic-aware exploration directions for policy learning and improve the exploration efficiency of the algorithm. PGLS can be integrated into current policy gradient algorithms, such as deep deterministic policy gradient(DDPG). The overall control framework is realized and demonstrated in a dynamics simulation environment. Simulation results show that this approach can effectively control the soft arm to reach and track the targets. Compared with DDPG and other model-free reinforcement learning algorithms, the proposed PGLS algorithm has a great improvement in convergence speed and performance. In addition, a fluid-driven soft manipulator is designed and fabricated in this paper, which can verify the proposed PGLS algorithm in real experiments in the future.
基金co-supported by the National Natural Science Foundation of China(No.91748209,11402229)Natural Science Foundation of Zhejiang Province(No.LY17A020003)the Fundamental Research Funds for the Central Universities(No.2018QNA4054,2019QNA4057)。
文摘A novel soft robotic arm(SRA)composed of two soft extensible arms(SEAs)and a soft bendable joint(SBJ)for space capture systems is presented in this paper.A diamond origami pattern was applied in the design of the SEAs,and large deformations of the SEAs in positive pressure were simulated using the nonlinear finite element method.A kinematic model of the SRA using the Denavit–Hartenberg method based on the assumption of constant curvatures was proposed.A closed-loop model-free control system based on a PID controller was developed using real-time data from a vision sensor system.The kinematic model and closed-loop model-free control system are experimentally evaluated on an SRA prototype by four experiments.The experimental results demonstrate that the derived kinematic model can finely describe the movement of the SRA and that the closed-loop control system can control the SRA to reach the desired destination or trajectory within an acceptable error and performs well in long-term repeated operations.