Although many aroma components have been identified in green tea leaves, the aroma compounds contributing to green tea's characteristic odor have not yet been reported. The authors recently reported that aroma compon...Although many aroma components have been identified in green tea leaves, the aroma compounds contributing to green tea's characteristic odor have not yet been reported. The authors recently reported that aroma components with a matcha-like odor are present in both green tea and black tea prepared from the Sayamakaori tea cuttivar. This matcha-like odor is similar to the odor of commercial available matcha (high-quality powdered green tea), and is a specific odor feature of green tea leaves. At present, the green-tea odor is thought to arise from the combination of a large number of constituents. Recent reports indicate that a complex interaction between olfactory receptors and odorants is important for the evaluation of the odors. Taking into consideration these findings, the authors investigated the aroma profile of green tea, focusing on the characteristic molecular structures of the constituents that give matcha-like odor. Using a combination of organic synthesis and gas chromatography-mass spectrometry plus gas chromatography-olfactometry, the authors identified aroma components with matcha-like odors in five other tea cultivars. This investigation also revealed that several compounds with a formyl group were important constituents of the aroma of green tea leaves, although the odor of each constituent was not individually similar to the tea's overall aroma. The authors found for the first time a group of key components that have the matcha-like odor.展开更多
In this work, we investigated aroma volatiles emanated by dry roots, stems, leaves, flowers, and fruits of Cardariadraba (L.) Desv. growing wild in Tunisia and its aerial part essential oils (EOs) composition. A total...In this work, we investigated aroma volatiles emanated by dry roots, stems, leaves, flowers, and fruits of Cardariadraba (L.) Desv. growing wild in Tunisia and its aerial part essential oils (EOs) composition. A total of 37 volatileorganic compounds (96.7%–98.9%) were identified;4 esters, 4 alcohols, 7 hydrocarbons, 12 aldehydes, 5 ketones,1 lactone, 1 organosulfur compound, 2 organonitrogen compounds, and 1 acid. The hydrocarbons form the maingroup, representing 49.5%–84.6% of the total detected volatiles. The main constituent was 2,2,4,6,6-pentamethylheptane(44.5%–76.2%) reaching the highest relative percentages. Forty-two compounds were determined in thetwo fractions of EOs, representing 98.8% and 97.2% of the total oil composition, respectively. The principal componentswere hexadecanoic acid (34.6%), 6-methyl-5-hepten-2-one (18.3%), decanal (15.0%), 6,10,14-trimethyl-2-pentadecanone (13.2%), and n-pentacosane (13%). Micromorphological details of the leaf and stem epidermisusing light microscopy revealed polygonal cells with sinuous walls in the adaxial and abaxial leaf surfaces andnearly rectangular and long ones with linear and thick walls for the stem epidermis. The stomata complexes wereanisocytic in the leaf epidermis and mainly anisocytic and rarely paracytic in the stem epidermis. Non-glandulartrichomes were unbranched and long with an acute apex or short with a convex apex. The glandular ones wereidentified for the first time in this species. They were short-stalked with a large secretory head. The highest stomatalindex (17.02%) was recorded in the abaxial leaf surface. The identification of headspace volatiles and essentialoil compounds can be used to characterize this species, and the various epidermis micromorphologicalfeatures are very useful for biosystematics taxonomic studies within Brassicaceae.展开更多
Consumption of onion has been associated with reduced incidence of chronic diseases. Phenolic, organosulfur and carbohydrate compounds present are largely responsible for these effects. This study examined composition...Consumption of onion has been associated with reduced incidence of chronic diseases. Phenolic, organosulfur and carbohydrate compounds present are largely responsible for these effects. This study examined compositional variation for health-enhancing compounds in a genetically diverse collection of onion cultivars. Total antioxidant activity and aroma profiles were characterized. Significant variation in bulb concentration for total and individual phenolic compounds, thiosulfinates, carbohydrates, and total and soluble solids was found. The range of variation was particularly large (>50-fold difference between the cultivars with the highest and lowest content) for fructo-oligosaccharides (FOS) and the polyphenols quercetin, epigallocatechin gallate and epicatechin gallate. Amino acid profiles varied significantly as well with substantial variation (~10 fold) observed in both total and essential amino acids. Total antioxidant activity was positively correlated with polyphenols content, and quercetin in particular (r = 0.83), suggesting a major contribution from phenolic compounds to onion antioxidant properties. Significant positive correlation was also found between solids and thiosulfinates content (r = 0.74) and between solids and FOS (r = 0.81), suggesting a dilution/concentration effect for organosulfur compounds and FOS in onion bulbs. The present study revealed broad variation for health-enhancing compounds content in onion germplasm, which can be exploited in breeding programs aiming at increasing onion nutraceutical value.展开更多
Micro-oxygenation (MOX) is an effective post-harvest technique for the flavor improvement of grape wine. This study investigated the effect of MOX on the aroma quality of Ningxia wine for the first time. Three sub-reg...Micro-oxygenation (MOX) is an effective post-harvest technique for the flavor improvement of grape wine. This study investigated the effect of MOX on the aroma quality of Ningxia wine for the first time. Three sub-region Cabernet Sauvignon dry red wines were treated with different levels of oxygen before or after malolactic fermentation. The wine aroma was analyzed through gas chromatography-mass spectrometry (GC-MS) and quantitative descriptive analysis (QDA) after six months of aging. The data obtained demonstrated that the dose and timing of oxygen addition were key factors influencing the effectiveness of MOX. The most noticeable modifications in wine aroma compounds were generated by an oxygen dosage of 30 (mL/L)/month added before malolactic fermentation. Predominantly, the concentrations of 2-phenylethanol, benzaldehyde, diacetyl, and 2,3-pentanedione showed an increased pattern upon MOX treatments. The sensory analysis revealed that MOX improved the aroma quality of wine by decreasing green and animal odors, meanwhile enhancing the olfactory intensities of dried fruits, flowers, and nuts. This work confirmed that MOX was suitable for aroma modification of Cabernet Sauvignon dry red wine from Ningxia and established a preliminary MOX procedure that can serve as a reference for future applications.展开更多
文摘Although many aroma components have been identified in green tea leaves, the aroma compounds contributing to green tea's characteristic odor have not yet been reported. The authors recently reported that aroma components with a matcha-like odor are present in both green tea and black tea prepared from the Sayamakaori tea cuttivar. This matcha-like odor is similar to the odor of commercial available matcha (high-quality powdered green tea), and is a specific odor feature of green tea leaves. At present, the green-tea odor is thought to arise from the combination of a large number of constituents. Recent reports indicate that a complex interaction between olfactory receptors and odorants is important for the evaluation of the odors. Taking into consideration these findings, the authors investigated the aroma profile of green tea, focusing on the characteristic molecular structures of the constituents that give matcha-like odor. Using a combination of organic synthesis and gas chromatography-mass spectrometry plus gas chromatography-olfactometry, the authors identified aroma components with matcha-like odors in five other tea cultivars. This investigation also revealed that several compounds with a formyl group were important constituents of the aroma of green tea leaves, although the odor of each constituent was not individually similar to the tea's overall aroma. The authors found for the first time a group of key components that have the matcha-like odor.
文摘In this work, we investigated aroma volatiles emanated by dry roots, stems, leaves, flowers, and fruits of Cardariadraba (L.) Desv. growing wild in Tunisia and its aerial part essential oils (EOs) composition. A total of 37 volatileorganic compounds (96.7%–98.9%) were identified;4 esters, 4 alcohols, 7 hydrocarbons, 12 aldehydes, 5 ketones,1 lactone, 1 organosulfur compound, 2 organonitrogen compounds, and 1 acid. The hydrocarbons form the maingroup, representing 49.5%–84.6% of the total detected volatiles. The main constituent was 2,2,4,6,6-pentamethylheptane(44.5%–76.2%) reaching the highest relative percentages. Forty-two compounds were determined in thetwo fractions of EOs, representing 98.8% and 97.2% of the total oil composition, respectively. The principal componentswere hexadecanoic acid (34.6%), 6-methyl-5-hepten-2-one (18.3%), decanal (15.0%), 6,10,14-trimethyl-2-pentadecanone (13.2%), and n-pentacosane (13%). Micromorphological details of the leaf and stem epidermisusing light microscopy revealed polygonal cells with sinuous walls in the adaxial and abaxial leaf surfaces andnearly rectangular and long ones with linear and thick walls for the stem epidermis. The stomata complexes wereanisocytic in the leaf epidermis and mainly anisocytic and rarely paracytic in the stem epidermis. Non-glandulartrichomes were unbranched and long with an acute apex or short with a convex apex. The glandular ones wereidentified for the first time in this species. They were short-stalked with a large secretory head. The highest stomatalindex (17.02%) was recorded in the abaxial leaf surface. The identification of headspace volatiles and essentialoil compounds can be used to characterize this species, and the various epidermis micromorphologicalfeatures are very useful for biosystematics taxonomic studies within Brassicaceae.
文摘Consumption of onion has been associated with reduced incidence of chronic diseases. Phenolic, organosulfur and carbohydrate compounds present are largely responsible for these effects. This study examined compositional variation for health-enhancing compounds in a genetically diverse collection of onion cultivars. Total antioxidant activity and aroma profiles were characterized. Significant variation in bulb concentration for total and individual phenolic compounds, thiosulfinates, carbohydrates, and total and soluble solids was found. The range of variation was particularly large (>50-fold difference between the cultivars with the highest and lowest content) for fructo-oligosaccharides (FOS) and the polyphenols quercetin, epigallocatechin gallate and epicatechin gallate. Amino acid profiles varied significantly as well with substantial variation (~10 fold) observed in both total and essential amino acids. Total antioxidant activity was positively correlated with polyphenols content, and quercetin in particular (r = 0.83), suggesting a major contribution from phenolic compounds to onion antioxidant properties. Significant positive correlation was also found between solids and thiosulfinates content (r = 0.74) and between solids and FOS (r = 0.81), suggesting a dilution/concentration effect for organosulfur compounds and FOS in onion bulbs. The present study revealed broad variation for health-enhancing compounds content in onion germplasm, which can be exploited in breeding programs aiming at increasing onion nutraceutical value.
基金The authors acknowledge that this work was financially supported by the National Natural Science Foundation of China(Grant No.31960472).
文摘Micro-oxygenation (MOX) is an effective post-harvest technique for the flavor improvement of grape wine. This study investigated the effect of MOX on the aroma quality of Ningxia wine for the first time. Three sub-region Cabernet Sauvignon dry red wines were treated with different levels of oxygen before or after malolactic fermentation. The wine aroma was analyzed through gas chromatography-mass spectrometry (GC-MS) and quantitative descriptive analysis (QDA) after six months of aging. The data obtained demonstrated that the dose and timing of oxygen addition were key factors influencing the effectiveness of MOX. The most noticeable modifications in wine aroma compounds were generated by an oxygen dosage of 30 (mL/L)/month added before malolactic fermentation. Predominantly, the concentrations of 2-phenylethanol, benzaldehyde, diacetyl, and 2,3-pentanedione showed an increased pattern upon MOX treatments. The sensory analysis revealed that MOX improved the aroma quality of wine by decreasing green and animal odors, meanwhile enhancing the olfactory intensities of dried fruits, flowers, and nuts. This work confirmed that MOX was suitable for aroma modification of Cabernet Sauvignon dry red wine from Ningxia and established a preliminary MOX procedure that can serve as a reference for future applications.