A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles.In particular,a finite volume method is used to discretize the Navier-Stokes...A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles.In particular,a finite volume method is used to discretize the Navier-Stokes control equations and calculate the circumferential pressure coefficient distribution on the bridge piers’surface.The results show that the deflection of the flow is non-monotonic.It first increases and then decreases with an increase in the skew angle.展开更多
In order to investigate the scale effect of turbulent flow around a circular cylinder, two similarity numbers (criteria) based on turbulent kinetic and dissipation rates associ- ated with the fluctuation characteris...In order to investigate the scale effect of turbulent flow around a circular cylinder, two similarity numbers (criteria) based on turbulent kinetic and dissipation rates associ- ated with the fluctuation characteristics of turbulence wake are deduced by analyzing the Reynolds averaged NavierStokes equations (RANS). The RNG k-s models and finite volume method are used to solve the governing equations and the second-order implicit time and upwind space discretization algorithms are used to discrete the governing equations. A numerical computation of flow parameters around a two-dimensional circular cylinder with Reynolds numbers ranging from 102 to l07 is accomplished and the result indicates that the fluctuation of turbulence flow along the center line in the wake of circular cylinder can never be changed with increasing Reynolds numbers when Re ≥ 3 × 10^6. This conclusion is useful for controlling the scale of numerical calculations and for applying model test data to engineering practice.展开更多
The electric-static body force model is obtained by solving Maxwell's electromagnetic equations. Based on the electro-static model, numerical modeling of flow around a cylinder with a dielectric barrier discharge (...The electric-static body force model is obtained by solving Maxwell's electromagnetic equations. Based on the electro-static model, numerical modeling of flow around a cylinder with a dielectric barrier discharge (DBD) plasma effect is also presented. The flow streamlines between the numerical simulation and the particle image velocimetry (PIV) experiment are consistent. According to the numerical simulation, DBD plasma can reduce the drag coefficient and change the vortex shedding frequencies of flow around tile cylinder.展开更多
In order to verify the effectiveness and superiority of the dynamic hybrid RANS/LES(DHRL)model,the flow around a cylinder with sinusoidal fluctuating velocity at the inlet was used as the test case.The latest computat...In order to verify the effectiveness and superiority of the dynamic hybrid RANS/LES(DHRL)model,the flow around a cylinder with sinusoidal fluctuating velocity at the inlet was used as the test case.The latest computational fluid dynamics(CFD)model can flexibly choose any existing large-eddy simulation(LES)method combined with RANS method to calculate the flow field.In addition,the DLES model and DDES model are selected as typical representatives of the turbulence model to compare the capture ability of the flow field mechanism.The internal flow field including the y+value,velocity distribution,turbulent kinetic energy and vortex structures is comprehensively analyzed.Finally,the results show that the new model has enough sensitivity to capture the information of the flow field and has more consistent velocity distribution with the experimental value,which shows its potential in practical engineering applications to some extent.展开更多
A vorticity-velocity method was used to study the incompressible viscous fluid flow around a circular cylinder with surface suction or blowing. The resulted high order implicit difference equations were effeciently so...A vorticity-velocity method was used to study the incompressible viscous fluid flow around a circular cylinder with surface suction or blowing. The resulted high order implicit difference equations were effeciently solved by the modified incomplete LU decomposition conjugate gradient scheme ( MILU-CG). The effects of surface suction or blowing' s position and strength on the vortex structures in the cylinder wake, as well as on the drag and lift forces at Reynoldes number Re = 100 were investigated numerically. The results show that the suction on the shoulder of the cylinder or the blowing on the rear of the cylinder can effeciently suppress the asymmetry of the vortex wake in the transverse direction and greatly reduce the lift force; the suction on the shoulder of the cylinder, when its strength is properly chosen, can reduce the drag force significantly, too.展开更多
Flows around rectangular cylinders with a series of width-to-height ratios are calculated by means of the Improved Finite Analytic Method (IFAM) and the formation, development and shedding of vortices from the cylinde...Flows around rectangular cylinders with a series of width-to-height ratios are calculated by means of the Improved Finite Analytic Method (IFAM) and the formation, development and shedding of vortices from the cylinders are simulated successfully. According to these results of time-dependent processes the physical phenomena in the flows are investigated in detail, and the discontinuity of Strouhal number is explained in the case of the width-to-height ratio equal to 3.0. The numer- ical solutions here show good agreement with the experimental results. In addition, based on several hundreds of the calculated flow patterns a moving picture is made by the computer image processing technology and recorded on a video tape, and then the vivid pictures of the physical process of vortex-shedding can be replayed later and analysed in detail.展开更多
This paper is concerned with the numerical simulation of the transient effect of an inertialess Boger flow past a confined circular cylinder and the comparison of predictions with particle image velocimetry (PIV) meas...This paper is concerned with the numerical simulation of the transient effect of an inertialess Boger flow past a confined circular cylinder and the comparison of predictions with particle image velocimetry (PIV) measurements given by Shiang et al.. Dynamic simulation based on the Oldroyd-B constitutive model was carried out using a Lagrangian-Eulerian algorithm. The evolution of velocity field was obtained for the flow at two Deborah (De) numbers, i.e. De = 1.2 and 3.0. At low De, the flow reached steady state rapidly, and showed a symmetric flow regime. However, at high De, the time required to reach steady flow behind the cylinder increased significantly, and the distribution of the velocity field appears to be asymmetric with respect to the stagnation line. Fairly good agreement between the numerical results and the experimental observations is reported. It can be concluded that both the experimental measurements and the present simulations indicate that the elasticity of the polymeric flow strongly affect the flow regime of viscoelastic flow around a confined cylinder.展开更多
Diffusion of momentum gives rise to viscosity. This article presents a solution in the explicit form of the equation of the momentum diffusion for a viscous fluid flowing around a plate taking into account deceleratio...Diffusion of momentum gives rise to viscosity. This article presents a solution in the explicit form of the equation of the momentum diffusion for a viscous fluid flowing around a plate taking into account deceleration. Three characteristic regions of a viscous flow have been described: the mantle, the body of the boundary layer, the viscous sublayer. In the mantle, the effect of viscosity is significant at a considerable distance from the plate. The momentum diffusion is focused in the body of the boundary layer. The diffusion force that produces the momentum of force giving rise to eddies is localized in the viscous sublayer. At the beginning of the plate, a moment of force twists the liquid along the flow, creating eddies that roll along the plate. For this reason, they are pressed against the surface of the plate. But at some distance from the beginning of the plate, the moment of force changes its orientation to the opposite and twists the vortices in the opposite direction, causing the vortices to roll along the plate against the flow. This causes the liquid to detach from the surface of the plate. This is the beginning of turbulence. The diameter of the vortex produced in the viscous sublayer is small being of the order of the thickness of the viscous sublayer. The vortex possesses a large angular velocity. Due to the momentum diffusion and the effect of the eddies combined in passing along the plate, its diameter increases up to the size of the thickness of the boundary layer and even more, whereas its angular velocity decreases down to the values really observed. The value of the critical Reynolds number of the transition from the laminar flow to the turbulent one has been found, and it agrees with the experimental data. The value of the shear stress produced by the viscous fluid on the plate surface has also been obtained. The way of measurement of the friction coefficient characterizing the effect of the plate on the flow has been proposed. It has been shown that the boundary condition of adhesion to the surface of a body flown around, that is applied in the estimation of viscous flows, contradicts the real processes of the flow.展开更多
Large eddy simulation cooperated with the second order full extension ETG(Euler-Taylor-Galerkin) finite element method was applied to simulate the flow around two square cylinders arranged side by side at a spacing ra...Large eddy simulation cooperated with the second order full extension ETG(Euler-Taylor-Galerkin) finite element method was applied to simulate the flow around two square cylinders arranged side by side at a spacing ratio of (1.5.) The second order full extension ETG finite element method was developed by Wang and He. By means of Taylor expansion of terms containing time derivative, time derivative is replaced by space derivative. The function of it is equal to introducing an artificial viscosity term. The streamlines of the flow at different moments were obtained. The time history of drag coefficient, lift coefficient and the streamwise velocity on the symmetrical points were presented. Furthermore, the symmetrical problem of the frequency spectrum of flow around two square cylinders arranged side by side were studied by using the spectral analysis technology. The data obtained at the initial stage are excluded in order to avoid the influence of initial condition on the results. The power spectrums of drag coefficient, lift coefficient, the streamwise velocity on the symmetrical points were analyzed respectively. The results show that although the time domain process of dynamic parameters is non-symmetrical, the frequency domain process of them is symmetrical under the symmetrical boundary conditions.展开更多
文摘A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles.In particular,a finite volume method is used to discretize the Navier-Stokes control equations and calculate the circumferential pressure coefficient distribution on the bridge piers’surface.The results show that the deflection of the flow is non-monotonic.It first increases and then decreases with an increase in the skew angle.
基金supported by the National High-Tec Research and Development Program of China(2006AA09A104)
文摘In order to investigate the scale effect of turbulent flow around a circular cylinder, two similarity numbers (criteria) based on turbulent kinetic and dissipation rates associ- ated with the fluctuation characteristics of turbulence wake are deduced by analyzing the Reynolds averaged NavierStokes equations (RANS). The RNG k-s models and finite volume method are used to solve the governing equations and the second-order implicit time and upwind space discretization algorithms are used to discrete the governing equations. A numerical computation of flow parameters around a two-dimensional circular cylinder with Reynolds numbers ranging from 102 to l07 is accomplished and the result indicates that the fluctuation of turbulence flow along the center line in the wake of circular cylinder can never be changed with increasing Reynolds numbers when Re ≥ 3 × 10^6. This conclusion is useful for controlling the scale of numerical calculations and for applying model test data to engineering practice.
文摘The electric-static body force model is obtained by solving Maxwell's electromagnetic equations. Based on the electro-static model, numerical modeling of flow around a cylinder with a dielectric barrier discharge (DBD) plasma effect is also presented. The flow streamlines between the numerical simulation and the particle image velocimetry (PIV) experiment are consistent. According to the numerical simulation, DBD plasma can reduce the drag coefficient and change the vortex shedding frequencies of flow around tile cylinder.
基金Supported by the Open Fund of Key Laboratory of Road Construction Technology and Equipment of Chang’an University,Ministry of Education(310825171104)the Advanced Manufacturing Projects of Government and University Co-construction Program Funded by Jilin Province(SXGJSF2017-2)
文摘In order to verify the effectiveness and superiority of the dynamic hybrid RANS/LES(DHRL)model,the flow around a cylinder with sinusoidal fluctuating velocity at the inlet was used as the test case.The latest computational fluid dynamics(CFD)model can flexibly choose any existing large-eddy simulation(LES)method combined with RANS method to calculate the flow field.In addition,the DLES model and DDES model are selected as typical representatives of the turbulence model to compare the capture ability of the flow field mechanism.The internal flow field including the y+value,velocity distribution,turbulent kinetic energy and vortex structures is comprehensively analyzed.Finally,the results show that the new model has enough sensitivity to capture the information of the flow field and has more consistent velocity distribution with the experimental value,which shows its potential in practical engineering applications to some extent.
基金Foundation item:the Natural Science Foundation of Jiangsu Province(BK97056109)
文摘A vorticity-velocity method was used to study the incompressible viscous fluid flow around a circular cylinder with surface suction or blowing. The resulted high order implicit difference equations were effeciently solved by the modified incomplete LU decomposition conjugate gradient scheme ( MILU-CG). The effects of surface suction or blowing' s position and strength on the vortex structures in the cylinder wake, as well as on the drag and lift forces at Reynoldes number Re = 100 were investigated numerically. The results show that the suction on the shoulder of the cylinder or the blowing on the rear of the cylinder can effeciently suppress the asymmetry of the vortex wake in the transverse direction and greatly reduce the lift force; the suction on the shoulder of the cylinder, when its strength is properly chosen, can reduce the drag force significantly, too.
基金The project supported by the National Natural Science Foundation of China
文摘Flows around rectangular cylinders with a series of width-to-height ratios are calculated by means of the Improved Finite Analytic Method (IFAM) and the formation, development and shedding of vortices from the cylinders are simulated successfully. According to these results of time-dependent processes the physical phenomena in the flows are investigated in detail, and the discontinuity of Strouhal number is explained in the case of the width-to-height ratio equal to 3.0. The numer- ical solutions here show good agreement with the experimental results. In addition, based on several hundreds of the calculated flow patterns a moving picture is made by the computer image processing technology and recorded on a video tape, and then the vivid pictures of the physical process of vortex-shedding can be replayed later and analysed in detail.
基金This work is supported by the National Natural Science Foundation of China (No. 29634030) and subsidized by the Special Funds for Major State Basic Research Projects (G1999064800).
文摘This paper is concerned with the numerical simulation of the transient effect of an inertialess Boger flow past a confined circular cylinder and the comparison of predictions with particle image velocimetry (PIV) measurements given by Shiang et al.. Dynamic simulation based on the Oldroyd-B constitutive model was carried out using a Lagrangian-Eulerian algorithm. The evolution of velocity field was obtained for the flow at two Deborah (De) numbers, i.e. De = 1.2 and 3.0. At low De, the flow reached steady state rapidly, and showed a symmetric flow regime. However, at high De, the time required to reach steady flow behind the cylinder increased significantly, and the distribution of the velocity field appears to be asymmetric with respect to the stagnation line. Fairly good agreement between the numerical results and the experimental observations is reported. It can be concluded that both the experimental measurements and the present simulations indicate that the elasticity of the polymeric flow strongly affect the flow regime of viscoelastic flow around a confined cylinder.
文摘Diffusion of momentum gives rise to viscosity. This article presents a solution in the explicit form of the equation of the momentum diffusion for a viscous fluid flowing around a plate taking into account deceleration. Three characteristic regions of a viscous flow have been described: the mantle, the body of the boundary layer, the viscous sublayer. In the mantle, the effect of viscosity is significant at a considerable distance from the plate. The momentum diffusion is focused in the body of the boundary layer. The diffusion force that produces the momentum of force giving rise to eddies is localized in the viscous sublayer. At the beginning of the plate, a moment of force twists the liquid along the flow, creating eddies that roll along the plate. For this reason, they are pressed against the surface of the plate. But at some distance from the beginning of the plate, the moment of force changes its orientation to the opposite and twists the vortices in the opposite direction, causing the vortices to roll along the plate against the flow. This causes the liquid to detach from the surface of the plate. This is the beginning of turbulence. The diameter of the vortex produced in the viscous sublayer is small being of the order of the thickness of the viscous sublayer. The vortex possesses a large angular velocity. Due to the momentum diffusion and the effect of the eddies combined in passing along the plate, its diameter increases up to the size of the thickness of the boundary layer and even more, whereas its angular velocity decreases down to the values really observed. The value of the critical Reynolds number of the transition from the laminar flow to the turbulent one has been found, and it agrees with the experimental data. The value of the shear stress produced by the viscous fluid on the plate surface has also been obtained. The way of measurement of the friction coefficient characterizing the effect of the plate on the flow has been proposed. It has been shown that the boundary condition of adhesion to the surface of a body flown around, that is applied in the estimation of viscous flows, contradicts the real processes of the flow.
文摘Large eddy simulation cooperated with the second order full extension ETG(Euler-Taylor-Galerkin) finite element method was applied to simulate the flow around two square cylinders arranged side by side at a spacing ratio of (1.5.) The second order full extension ETG finite element method was developed by Wang and He. By means of Taylor expansion of terms containing time derivative, time derivative is replaced by space derivative. The function of it is equal to introducing an artificial viscosity term. The streamlines of the flow at different moments were obtained. The time history of drag coefficient, lift coefficient and the streamwise velocity on the symmetrical points were presented. Furthermore, the symmetrical problem of the frequency spectrum of flow around two square cylinders arranged side by side were studied by using the spectral analysis technology. The data obtained at the initial stage are excluded in order to avoid the influence of initial condition on the results. The power spectrums of drag coefficient, lift coefficient, the streamwise velocity on the symmetrical points were analyzed respectively. The results show that although the time domain process of dynamic parameters is non-symmetrical, the frequency domain process of them is symmetrical under the symmetrical boundary conditions.