A new method for array calibration of array gain and phase uncertainties, which severely degrade the performance of spatial spectrum estimation, is presented. The method is based on the idea of the instrumental sensor...A new method for array calibration of array gain and phase uncertainties, which severely degrade the performance of spatial spectrum estimation, is presented. The method is based on the idea of the instrumental sensors method (ISM), two well-calibrated sensors are added into the original array. By applying the principle of estimation of signal parameters via rotational invariance techniques (ESPRIT), the direction-of-arrivals (DOAs) and uncertainties can be estimated simultaneously through eigen-decomposition. Compared with the conventional ones, this new method has less computational complexity while has higher estimation precision, what's more, it can overcome the problem of ambiguity. Both theoretical analysis and computer simulations show the effectiveness of the proposed method.展开更多
An acoustic vector sensor can measure the components of particle velocity and the acoustic pressure at the same point simultaneously, which provides a larger array gain against the ambient noise and a higher angular r...An acoustic vector sensor can measure the components of particle velocity and the acoustic pressure at the same point simultaneously, which provides a larger array gain against the ambient noise and a higher angular resolution than the omnidirectional pressure sensor. This paper presents an experimental study of array gain for a conformal acoustic vector sensor array in a practical environment. First, the manifold vector is calculated using the real measured data so that the effects of array mismatches can be minimized. Second, an optimal beamformer with a specific spatial response on the basis of the stable directivity of the ambient noise is designed, which can effectively suppress the ambient noise. Experimental results show that this beamformer for the conformal acoustic vector sensor array provides good signal-to- noise ratio enhancement and is more advantageous than the delay-and-sum and minimum variance distortionless response beamformers.展开更多
The fourth-order cumulant of zero mean Gaussian distribution noise always equals to zero theoretically. In practice the probability density of noise and reverberation is the key problem to performance of the fourth-or...The fourth-order cumulant of zero mean Gaussian distribution noise always equals to zero theoretically. In practice the probability density of noise and reverberation is the key problem to performance of the fourth-order cumulant beamforming technique. In this paper, the array gain functions of the fourth-order cumulant beamforming are deducted considering the instantaneous amplitude distribution of the ambient sea noise and bottom reverberation respectively. And the relationships are determined between array gain and the factors including the number of the array elements, the fourth-order and second-order statistical properties of the noise and reverberation, and the input signal-to-noise ratio. It is also verified that there is a critical signal-to-interference ratio and the fourth-order cumulant beamforming can obtain higher gain and resolution than the conventional beamforming method when the ratio is larger than it. The results of experiment data processing demonstrate that the gain and the resolution of the fourth-order cumulant beamforming coincide with the theoretic.展开更多
The inhomogenous ocean waveguide,which leads the amplitude and phase of the signal arriving at a hydrophone array to fluctuate,is one of the causes that make the array gain deviate from its ideal value.The relationshi...The inhomogenous ocean waveguide,which leads the amplitude and phase of the signal arriving at a hydrophone array to fluctuate,is one of the causes that make the array gain deviate from its ideal value.The relationship between the array gain and the fluctuant acoustic channel is studied theoretically.The analytical expression of the array gain is derived via an acoustic channel transfer function on the assumption that the ambient noise field is isotropic.The expression is expanded via the Euler formula to give an insight into the effect of the fluctuant acoustic channel on the array gain.The result demonstrates that the amplitude fluctuation of the acoustic channel transfer functions has a slight effect on the array gain;however,the uniformity of the phase difference between the weighting coefficient and the channel transfer function on all the hydrophones in the array is a major factor that leads the array gain to further deviate from its ideal value.The numerical verification is conducted in the downslope waveguide,in which the gain of a horizontal uniform linear array(HLA)with a wide-aperture operating in the continental slope area is considered.Numerical result is consistent with the theoretical analysis.展开更多
The limited physical size for autonomous underwater vehicles (AUV) or unmanned underwater vehicles (UUV) makes it difficult to acquire enough space gain for localizing long-distance targets. A new technique about ...The limited physical size for autonomous underwater vehicles (AUV) or unmanned underwater vehicles (UUV) makes it difficult to acquire enough space gain for localizing long-distance targets. A new technique about long-distance target apperception with passive synthetic aperture array for underwater vehicles is presented. First, a synthetic aperture-processing algorithm based on the FFT transform in the beam space (BSSAP) is introduced. Then, the study on the flank array passive long-distance apperception techniques in the frequency scope of 11-18 kHz is implemented from the view of improving array gains, detection probability and augmenting detected range under a certain sea environment. The results show that the BSSAP algorithm can extend the aperture effectively and improve detection probability. Because of the augment of the transmission loss, the detected range has the trend of decline with the increase of frequency under the same target source level. The synthesized array could improve the space gain by nearly 7 dB and SNR is increased by about 5 dB. The detected range is enhanced to nearly 2 km under the condition of 108-118 dB of the target source level for AUV system in measurement interval of nearly 1 s.展开更多
The performance of multi-antenna multi-relay cooperative system is investigated in this paper. Two relaying strategies, i.e., reactive and proactive strategies are analyzed with the Amplifyand-Forward (AF) and Decode-...The performance of multi-antenna multi-relay cooperative system is investigated in this paper. Two relaying strategies, i.e., reactive and proactive strategies are analyzed with the Amplifyand-Forward (AF) and Decode-and-Forward (DF) protocols. We derive the Cumulative Distribution Function (CDF) of the received Signal-to-Noise Ratio (SNR) at the destination, which is used to calculate the exact outage probability, for both AF and DF protocols. According to these results, we conclude that a cooperative network which composes K relays each equipped with nr antennas can achieve maximal order-(2nrK+1) diversity gain, by proper processing at relays and destination. Furthermore, the performance comparison is given, in terms of outage probability. These two strategies outperform each other in different scenarios in AF protocol, whilst proactive strategy is always better than its counterpart in DF protocol. According to these results, the optimal power allocation schemes among relay nodes are also presented, with reasonable power constraint.展开更多
Considering the flexibility and controllability of heat exchanger networks (HENs), bypasses are widely used for effective control of process stream target temperatures. However, the optimal location for the bypass is ...Considering the flexibility and controllability of heat exchanger networks (HENs), bypasses are widely used for effective control of process stream target temperatures. However, the optimal location for the bypass is generally difficult to design with the trade-off between controllability and capital investments. In this paper, based on the steady-state model of heat exchanger networks the optimal bypass location was firstly selected by iteratively calculating the non-square Relative Gain Array (ns-RGA). To simplify the calculation process, rules of bypass selection were also proposed. In order to evaluate this method, then, the structural controllability of heat exchanger networks was analyzed. With both the consideration of the controllability and capital investments, the bypasses locations were finally selected. A case study on the HEN in Crude Distillation Unit was presented in which the ns-RGA and structural controllability were used to select bypasses and also to evaluate the results.展开更多
The exceptional point(EP)is one of the typical properties of parity–time-symmetric systems,arising from modes coupling with identical resonant frequencies or propagation constants in optics.Here we show that in addit...The exceptional point(EP)is one of the typical properties of parity–time-symmetric systems,arising from modes coupling with identical resonant frequencies or propagation constants in optics.Here we show that in addition to two different modes coupling,a nonuniform distribution of gain and loss leads to an offset from the original propagation constants,including both real and imaginary parts,resulting in the absence of EP.These behaviors are examined by the general coupled-mode theory from the first principle of the Maxwell equations,which yields results that are more accurate than those from the classical coupled-mode theory.Numerical verification via the finite element method is provided.In the end,we present an approach to achieve lossless propagation in a geometrically symmetric waveguide array.展开更多
Loop pairing is one of the major concerns when designing decentralized control systems for multivariable processes.Most existing pairing tools,such as the relative gain array(RGA) method,have shortcomings both in meas...Loop pairing is one of the major concerns when designing decentralized control systems for multivariable processes.Most existing pairing tools,such as the relative gain array(RGA) method,have shortcomings both in measuring interaction and in integrity issues.To evaluate the overall interaction among loops,we propose a statistics-based criterion via enumerating all possible combinations of loop statuses.Furthermore,we quantify the traditional concept of integrity to represent the extent of integrity of a decentralized control system.Thus,we propose that a pairing decision should be made by taking both factors into consideration.Two examples are provided to illustrate the effectiveness of the proposed criterion.展开更多
文摘A new method for array calibration of array gain and phase uncertainties, which severely degrade the performance of spatial spectrum estimation, is presented. The method is based on the idea of the instrumental sensors method (ISM), two well-calibrated sensors are added into the original array. By applying the principle of estimation of signal parameters via rotational invariance techniques (ESPRIT), the direction-of-arrivals (DOAs) and uncertainties can be estimated simultaneously through eigen-decomposition. Compared with the conventional ones, this new method has less computational complexity while has higher estimation precision, what's more, it can overcome the problem of ambiguity. Both theoretical analysis and computer simulations show the effectiveness of the proposed method.
基金Project supported by the China Postdoctoral Science Foundation(Grant No.2016M592782)the National Natural Science Foundation of China(Grant Nos.11274253 and 11604259)
文摘An acoustic vector sensor can measure the components of particle velocity and the acoustic pressure at the same point simultaneously, which provides a larger array gain against the ambient noise and a higher angular resolution than the omnidirectional pressure sensor. This paper presents an experimental study of array gain for a conformal acoustic vector sensor array in a practical environment. First, the manifold vector is calculated using the real measured data so that the effects of array mismatches can be minimized. Second, an optimal beamformer with a specific spatial response on the basis of the stable directivity of the ambient noise is designed, which can effectively suppress the ambient noise. Experimental results show that this beamformer for the conformal acoustic vector sensor array provides good signal-to- noise ratio enhancement and is more advantageous than the delay-and-sum and minimum variance distortionless response beamformers.
基金supported by the national Natural Science Foundation of China(51279033)the Natural Science Foundation of Heilongjiang Province,China(F201346)
文摘The fourth-order cumulant of zero mean Gaussian distribution noise always equals to zero theoretically. In practice the probability density of noise and reverberation is the key problem to performance of the fourth-order cumulant beamforming technique. In this paper, the array gain functions of the fourth-order cumulant beamforming are deducted considering the instantaneous amplitude distribution of the ambient sea noise and bottom reverberation respectively. And the relationships are determined between array gain and the factors including the number of the array elements, the fourth-order and second-order statistical properties of the noise and reverberation, and the input signal-to-noise ratio. It is also verified that there is a critical signal-to-interference ratio and the fourth-order cumulant beamforming can obtain higher gain and resolution than the conventional beamforming method when the ratio is larger than it. The results of experiment data processing demonstrate that the gain and the resolution of the fourth-order cumulant beamforming coincide with the theoretic.
基金Project supported by the National Natural Science Foundation of China(Grant No.11534009)
文摘The inhomogenous ocean waveguide,which leads the amplitude and phase of the signal arriving at a hydrophone array to fluctuate,is one of the causes that make the array gain deviate from its ideal value.The relationship between the array gain and the fluctuant acoustic channel is studied theoretically.The analytical expression of the array gain is derived via an acoustic channel transfer function on the assumption that the ambient noise field is isotropic.The expression is expanded via the Euler formula to give an insight into the effect of the fluctuant acoustic channel on the array gain.The result demonstrates that the amplitude fluctuation of the acoustic channel transfer functions has a slight effect on the array gain;however,the uniformity of the phase difference between the weighting coefficient and the channel transfer function on all the hydrophones in the array is a major factor that leads the array gain to further deviate from its ideal value.The numerical verification is conducted in the downslope waveguide,in which the gain of a horizontal uniform linear array(HLA)with a wide-aperture operating in the continental slope area is considered.Numerical result is consistent with the theoretical analysis.
文摘The limited physical size for autonomous underwater vehicles (AUV) or unmanned underwater vehicles (UUV) makes it difficult to acquire enough space gain for localizing long-distance targets. A new technique about long-distance target apperception with passive synthetic aperture array for underwater vehicles is presented. First, a synthetic aperture-processing algorithm based on the FFT transform in the beam space (BSSAP) is introduced. Then, the study on the flank array passive long-distance apperception techniques in the frequency scope of 11-18 kHz is implemented from the view of improving array gains, detection probability and augmenting detected range under a certain sea environment. The results show that the BSSAP algorithm can extend the aperture effectively and improve detection probability. Because of the augment of the transmission loss, the detected range has the trend of decline with the increase of frequency under the same target source level. The synthesized array could improve the space gain by nearly 7 dB and SNR is increased by about 5 dB. The detected range is enhanced to nearly 2 km under the condition of 108-118 dB of the target source level for AUV system in measurement interval of nearly 1 s.
基金supported by the National Natural Science Foundation of China (Grant No. 60932003)the National Hightech R&D Program of China (863 Program, Grant No. 2007AA01Z452, No. 2009AA01Z118)the Shanghai Municipal Natural Science Foundation (Grant No. 09ZR1414900)
文摘The performance of multi-antenna multi-relay cooperative system is investigated in this paper. Two relaying strategies, i.e., reactive and proactive strategies are analyzed with the Amplifyand-Forward (AF) and Decode-and-Forward (DF) protocols. We derive the Cumulative Distribution Function (CDF) of the received Signal-to-Noise Ratio (SNR) at the destination, which is used to calculate the exact outage probability, for both AF and DF protocols. According to these results, we conclude that a cooperative network which composes K relays each equipped with nr antennas can achieve maximal order-(2nrK+1) diversity gain, by proper processing at relays and destination. Furthermore, the performance comparison is given, in terms of outage probability. These two strategies outperform each other in different scenarios in AF protocol, whilst proactive strategy is always better than its counterpart in DF protocol. According to these results, the optimal power allocation schemes among relay nodes are also presented, with reasonable power constraint.
基金Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (YJRC-2011-11).
文摘Considering the flexibility and controllability of heat exchanger networks (HENs), bypasses are widely used for effective control of process stream target temperatures. However, the optimal location for the bypass is generally difficult to design with the trade-off between controllability and capital investments. In this paper, based on the steady-state model of heat exchanger networks the optimal bypass location was firstly selected by iteratively calculating the non-square Relative Gain Array (ns-RGA). To simplify the calculation process, rules of bypass selection were also proposed. In order to evaluate this method, then, the structural controllability of heat exchanger networks was analyzed. With both the consideration of the controllability and capital investments, the bypasses locations were finally selected. A case study on the HEN in Crude Distillation Unit was presented in which the ns-RGA and structural controllability were used to select bypasses and also to evaluate the results.
基金National Natural Science Foundation of China(NSFC)(11274083,61405067)Guandong Natural Science Foundation(2015A030313748)Shenzhen Municipal Science and Technology Plan(JCYJ20150513151706573)
文摘The exceptional point(EP)is one of the typical properties of parity–time-symmetric systems,arising from modes coupling with identical resonant frequencies or propagation constants in optics.Here we show that in addition to two different modes coupling,a nonuniform distribution of gain and loss leads to an offset from the original propagation constants,including both real and imaginary parts,resulting in the absence of EP.These behaviors are examined by the general coupled-mode theory from the first principle of the Maxwell equations,which yields results that are more accurate than those from the classical coupled-mode theory.Numerical verification via the finite element method is provided.In the end,we present an approach to achieve lossless propagation in a geometrically symmetric waveguide array.
基金supported by the National High-Tech Research and Development Program (863) of China (No.2009AA04Z154)the National Natural Science Foundation of China (No.60736021)
文摘Loop pairing is one of the major concerns when designing decentralized control systems for multivariable processes.Most existing pairing tools,such as the relative gain array(RGA) method,have shortcomings both in measuring interaction and in integrity issues.To evaluate the overall interaction among loops,we propose a statistics-based criterion via enumerating all possible combinations of loop statuses.Furthermore,we quantify the traditional concept of integrity to represent the extent of integrity of a decentralized control system.Thus,we propose that a pairing decision should be made by taking both factors into consideration.Two examples are provided to illustrate the effectiveness of the proposed criterion.