期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Generalized Array Factor for Time-Modulated Hexagonal Based Antenna Array Geometry With Novel Trapezoidal Switching
1
作者 Gopi Ram 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1967-1972,共6页
The concept of the time-modulated array has been emerging as an alternative to the complex phase shifters,which lowers the cost of the array feeding network due to the utilization of radio frequency(RF)switches.The va... The concept of the time-modulated array has been emerging as an alternative to the complex phase shifters,which lowers the cost of the array feeding network due to the utilization of radio frequency(RF)switches.The various forms of hexagonal antenna array geometries can be used for applications like surveillance tracking in phased array radar and wireless communication systems.This work proposes the generalized array factor(AF)for the hexagonal antenna array geometry based on time modulation.The time modulation in generalized hexagonal geometry can maintain the fixed static amplitude excitation,giving more flexibility over time.Furthermore,a novel trapezoidal switching function is also proposed and applied to the generalized array factor to enable future researchers to use this array factor in the field of advancement to observe how switching schemes like trapezoidal and rectangular affect the array pattern's side lobe level(SLL).The generalized equation can be utilized for the analysis and synthesis of radiation characteristics of the time-modulated hexagonal array(TMHA),time-modulated concentric hexagonal array(TMCHA),time-modulated hexagonal cylindrical array(TMHCA),and time-modulated hexagonal concentric cylindrical array(TMHCCA).The numerical result illustrates the generation of AF of time-modulated hexagonal structures and also shows that the trapezoidal switching sequence outperforms the rectangular switch using the cat swarm optimization(CSO)approach. 展开更多
关键词 Hexagonal array geometry radiation pattern time-modulation trapezoidal pulse
下载PDF
Accurate Source-Receiver Positioning Method for a High-Resolution Deep-Towed Multichannel Seismic Exploration System
2
作者 LI Jing LIU Kai +5 位作者 WEI Zhengrong ZHANG Liancheng LIU Yangting PEI Yanliang LIU Chenguang LIU Baohua 《Journal of Ocean University of China》 CAS CSCD 2024年第2期415-426,共12页
The near-seabed multichannel seismic exploration systems have yielded remarkable successes in marine geological disaster assessment,marine gas hydrate investigation,and deep-sea mineral exploration owing to their high... The near-seabed multichannel seismic exploration systems have yielded remarkable successes in marine geological disaster assessment,marine gas hydrate investigation,and deep-sea mineral exploration owing to their high vertical and horizontal resolution.However,the quality of deep-towed seismic imaging hinges on accurate source-receiver positioning information.In light of existing technical problems,we propose a novel array geometry inversion method tailored for high-resolution deep-towed multichannel seismic exploration systems.This method is independent of the attitude and depth sensors along a deep-towed seismic streamer,accounting for variations in seawater velocity and seabed slope angle.Our approach decomposes the towed line array into multiline segments and characterizes its geometric shape using the line segment distance and pitch angle.Introducing optimization parameters for seawater velocity and seabed slope angle,we establish an objective function based on the model,yielding results that align with objective reality.Employing the particle swarm optimization algorithm enables synchronous acquisition of optimized inversion results for array geometry and seawater velocity.Experimental validation using theoretical models and practical data verifies that our approach effectively enhances source and receiver positioning inversion accuracy.The algorithm exhibits robust stability and reliability,addressing uncertainties in seismic traveltime picking and complex seabed topography conditions. 展开更多
关键词 high-resolution deep-towed multichannel seismic exploration source-receiver positioning array geometry inversion seawater heterogeneity seabed slope angle
下载PDF
Optimal Design of Improved L-shaped Coprime Array Based on Difference and Sum Co-array
3
作者 Rui Fang Xiangnan Li +2 位作者 Haixia Wu Wei Gao Shiwei Ren 《Journal of Beijing Institute of Technology》 EI CAS 2020年第3期379-385,共7页
The concept of difference and sum co-array(DSCA)has become a new design idea for planar sparse arrays.Inspired by the shifting invariance property of DSCA,a specific configuration named here as the improved L-shaped a... The concept of difference and sum co-array(DSCA)has become a new design idea for planar sparse arrays.Inspired by the shifting invariance property of DSCA,a specific configuration named here as the improved L-shaped array is proposed.Compared to other traditional 2D sparse array configurations such as 2D nested arrays and hourglass arrays,the proposed configuration has larger central consecutive ranges in its DSCA,thus increasing the DOF.At the same time,the mutual coupling effect is also reduced due to the enlarged spacing between the adjacent sensors.Simulations further demonstrate the superiority of the proposed arrays in terms of detection performance and estimation accuracy. 展开更多
关键词 planar array geometry two-dimensional direction of arrival estimation differencesum co-array mutual coupling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部