Copy number variations have been found in patients with neural tube abnormalities.In this study,we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children ...Copy number variations have been found in patients with neural tube abnormalities.In this study,we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents.Of eight copy number variations,four were non-polymorphic.These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes,and microcephaly.Gene function enrichment analysis revealed that COX8 C,a gene associated with metabolic disorders of the nervous system,was located in the copy number variation region of Patient 1.Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome.Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease.展开更多
AIM: To characterize cytogenetic alterations in esophageal squamous cell carcinoma (ESCC) and its metastasis. METHODS: A total of 37 cases of primary ESCC and 15 pairs of primary ESCC tumors and their matched metastat...AIM: To characterize cytogenetic alterations in esophageal squamous cell carcinoma (ESCC) and its metastasis. METHODS: A total of 37 cases of primary ESCC and 15 pairs of primary ESCC tumors and their matched metastatic lymph nodes cases were enrolled from Linzhou, the high incidence area for ESCC in Henan, northern China. The comparative genomic hybridization (CGH) was applied to determine the chromosomal aberrations on the DNA extracted from the frozen ESCC and metastatic lymph node samples from these patients. RESULTS: CGH showed chromosomal aberrations in all the cases. In 37 cases of primary ESCC, chromosomal profile of DNA copy number was characterized by frequently detected gains at 8q (29/37, 78%), 3q (24/37, 65%), 5p (19/37, 51%); and frequently detected losses at 3p (21/37, 57%), 8p and 9q (14/37, 38%). In 15 pairs of primary ESCC tumors and their matched metastatic lymph node cases, the majority of the chromosomal aberrations in both primary tumor and metastatic lymph node lesions were consistent with the primary ESCC cases, but new candidate regions of interest were also detected. The most significant finding is the gains of chromosome 6p with a minimum high-level amplification region at 6p12-6q12 in 7 metastatic lymph nodes butonly in 2 corresponding primary tumors (P = 0.05) and 20p with a minimum high-level amplification region at 20p12 in 11 metastatic lymph nodes but only in 5 corresponding primary tumors (P < 0.05). Another interesting finding is the loss of chromosome 10p and 10q in 8 and 7 metastatic lymph nodes but only in 2 corresponding primary tumors (P < 0.05). CONCLUSION: Using the CGH technique to detect chromosomal aberrations in both the primary tumor and its metastatic lymph nodes of ESCC, gains of 8q, 3q and 5p and loss of 3p, 8p, 9q and 13q were specifically implicated in ESCC in Linzhou population. Gains of 6p and 20p and loss of 10pq may contribute to the lymph node metastasis of ESCC. These findings suggest that the gains and losses of chromosomal regions may contain ESCC-related oncogenes and tumor suppressor genes and provide important theoretic information for identifying and cloning novel ESCC-related oncogenes and tumor suppressor genes.展开更多
The knowledge of the primary origin of tumor is essential in designing an efficient cancer treatment algorithm. Useful diagnostic tools enable determination of primary origin of the tumor;however the majority of them ...The knowledge of the primary origin of tumor is essential in designing an efficient cancer treatment algorithm. Useful diagnostic tools enable determination of primary origin of the tumor;however the majority of them require tissue examination. Recent years, exploration of circulating tumor cells enabled scientists to study different parameters using the painless liquid biopsy. The present study aimed to identify whether aCGH might be used as a diagnostic tool in cancer detecting the primary origin of the tumor. Blood was extracted from healthy individuals and cancer samples and CTCs isolated. DNA extracted from the above samples and aCGH experiments followed. The samples were blinded analyzed and then unmasked to calculate specificity and sensitivity of the method. The sensitivity was 94%, the specificity 88%, while the positive prediction rate of the primary tumor was 72%. aCGH is a powerful tool in cancer diagnosis and treatment plan with high sensitivity and specificity rates. It can be performed from blood sample, which makes it an appropriate method for every patient, mainly for patients with unknown origin of the primary tumor.展开更多
Objective To investigate the relationship between genomic DNA imbalance in oligodendroglial tumors and its different classification. Methods 16 oligodendrogliomas and 17 anaplastic oligodendrogliomas were investigated...Objective To investigate the relationship between genomic DNA imbalance in oligodendroglial tumors and its different classification. Methods 16 oligodendrogliomas and 17 anaplastic oligodendrogliomas were investigated by comparative genomic hybridization on Paraffin-Embedded tissue samples,and the chromosomal genomic DNA imbalances were analyzed. Results Chromosome DNA imbalance rates in oligodendrogliomas展开更多
Objective To gain a better understanding of genetic changes in Cantonese nasopharyngeal carcinoma (NPC) Methods Comparative genomic hybridization (CGH) was performed on 17 primary nasopharyngeal carcinomas R...Objective To gain a better understanding of genetic changes in Cantonese nasopharyngeal carcinoma (NPC) Methods Comparative genomic hybridization (CGH) was performed on 17 primary nasopharyngeal carcinomas Results A novel copy number gain an chromosome 4q and loss of chromosome 1p were found at a high frequency (>50%) Conclusions Current analysis revealed a comprehensive profile of the chromosomal regions showing gain of chromosomes 4q, 12q, and 1q as well as loss of chromosomes 1p, 3p, 11q, 14q, 15q, 13q, Xq, 9q, 10p, 10q, and 16q Frequently altered loci may encode oncogenes or tumor suppressor genes involved in the development of primary NPC展开更多
Using the genomic DNAs of maize and rice as probes respectively, the homology of maize and rice genomes was assessed by genomic in situ hybridization. When rice genomic DNAs were hybridized to maize, all chromosomes d...Using the genomic DNAs of maize and rice as probes respectively, the homology of maize and rice genomes was assessed by genomic in situ hybridization. When rice genomic DNAs were hybridized to maize, all chromosomes displayed many multiple discrete regions, while each rice chromosome delineated a single consecutive chromosomal region after they were hybridized with maize genomic DNAs. The results indicate that the genomes of maize and rice share high homology, and confirm the proposal that maize and rice are diverged from a common ancestor.展开更多
Background Primary ovarian insufficiency (POI) is defined as a primary ovarian defect characterized by absent menarche (primary amenorrhea) or premature depletion of ovarian follicles before the age of 40 years. T...Background Primary ovarian insufficiency (POI) is defined as a primary ovarian defect characterized by absent menarche (primary amenorrhea) or premature depletion of ovarian follicles before the age of 40 years. The etiology of primary ovarian insufficiency in human female patients is still unclear. The purpose of this study is to investigate the potential genetic causes in primary amenorrhea patients by high resolution array based comparative genomic hybridization (array-CGH) analysis. Methods Following the standard karyotyping analysis, genomic DNA from whole blood of 15 primary amenorrhea patients and 15 normal control women was hybridized with Affymetrix cytogenetic 2.7M arrays following the standard protocol. Copy number variations identified by array-CGH were confirmed by real time polymerase chain reaction.展开更多
Approximately 30% of pregnancies after implantation end up in spontaneous abortions, and 50% of them are caused by chromosomal abnormalities. However, the spectrum of genomic copy number variants (CNVs) in products ...Approximately 30% of pregnancies after implantation end up in spontaneous abortions, and 50% of them are caused by chromosomal abnormalities. However, the spectrum of genomic copy number variants (CNVs) in products of conception (POC) and the underlying gene- dosage-sensitive mechanisms causing spontaneous abortions remain largely unknown. In this study, array comparative genornic hybridiza- tion (aCGH) analysis was performed as a salvage procedure for 128 POC culture failure (POC-CF) samples and as a supplemental procedure for 106 POC normal karyotype (POC-NK) samples. Chromosomal abnormalities were detected in 10% of POC-CF and pathogenic CNVs were detected in 3.9% of POC-CF and 5.7% of POC-NK samples. Compiled results from this study and relevant case series through a literature review demonstrated an abnormality detection rate (ADR) of 35% for chromosomal abnormalities in POC-CF samples, 3.7% for pathogenic CNVs in POC-CF samples, and 4.6% for pathogenic CNVs in POC-NK samples. Ingenuity Pathway Analysis (IPA) was performed on the genes from pathogenic CNVs found in POC samples. The denoted primary gene networks suggested that apoptosis and cell proliferation pathways are involved in miscarriage. In summary, a similar spectrum of cytogenomic abnormalities was observed in POC culture success and POC-CF samples. A threshold effect correlating the number of dosage-sensitive genes in a chromosome with the observed frequency of autosomai trisomy is proposed. A rationalized approach using firstly fluorescence in situ hybridization (FISH) testing with probes of chromosomes X/Y/ 18, 13/21, and 15/16/22 for common aneuploidies and polyploidies and secondly aCGH for other cytogenomic abnormalities is recommended for POC-CF samples.展开更多
Background Previous cytogenetic studies revealed rhabdomyosarcoma. We profiled chromosomal imbalances aberrations varied among the three subtypes of n the different subtypes and investigated the relationships between...Background Previous cytogenetic studies revealed rhabdomyosarcoma. We profiled chromosomal imbalances aberrations varied among the three subtypes of n the different subtypes and investigated the relationships between clinical parameters and genomic aberrations. Methods Comparative genomic hybridization was used to investigate genomic imbalances in 25 cases of primary rhabdomyosarcomas and two rhabdomyosarcoma cell lines. Specimens were reviewed to determine histological type, pathological grading and clinical staging. Results Changes involving one or more regions of the genome were seen in all rhabdomyosarcomal patients. For rhabdomyosarcoma, DNA sequence gains were most frequently (〉30%) seen in chromosomes 2p, 12q, 6p, 9q, 10q, lp, 2q, 6q, 8q, 15q and 18q; losses from 3p, 11p and 6p. In aggressive alveolar rhabdomyosarcoma, frequent gains were seen on chromosomes 12q, 2p, 6p, 2q, 4q, 10q and 15q; losses from 3p, 6p, lq and 5q. For embryonic rhabdomyosarcoma, frequent gains were on 7p, 9q, 2p, 18q, lp and 8q; losses only from 11p. Frequently gained chromosome arms of translocation associated with rhabdomyosarcoma were 12q, 2, 6, 10q, 4q and 15q; losses from 3p, 6p and 5q. The frequently gained chromosome arms of nontranslocation associated with rhabdomyosarcoma were 2p, 9q and 18q, while 11p and 14q were the frequently lost chromosome arms. Gains on chromosome 12q were significantly correlated with translocation type. Gains on chromosome 9q were significantly correlated with clinical staging. Conclusions Gains on chromosomes 2p, 12q, 6p, 9q, 10q, lp, 2q, 6q, 8q, 15q and 18q and losses on chromosomes 3p, 11p and 6p may be related to rhabdomyosarcomal carcinogenesis. Furthermore, gains on chromosome 12q may be correlated with translocation and gains on chromosome 9q with the early stages of rhabdomyosarcoma.展开更多
Neisseria meningitidis is a major cause of bacterial meningitis and septicemia worldwide. In China, serogroup A strains were responsible for over 95% of the cases, while serogroup B strains were mainly the cause of lo...Neisseria meningitidis is a major cause of bacterial meningitis and septicemia worldwide. In China, serogroup A strains were responsible for over 95% of the cases, while serogroup B strains were mainly the cause of localized outbreaks and sporadic cases. Before 2003, serogroup C strains were only re-covered from a few sporadic cases. However, a sudden increase in the number of cases due to sero-group C strains occurred during 2003—2005 in Anhui Province, China. Many cases were found in other provinces at the same time. Multilocus sequence typing (MLST) results indicated that the unique se-quence type 4821 clone meningococci, a new hyper-virulent lineage, was responsible for the serogroup C meningitis outbreaks. We have completed the project of sequencing the whole genome of the Chi-nese N. meningitidis serogroup C representative isolate 053442. We fabricated a whole-genome mi-croarray of N. meningitidis isolate 053442 and analyzed the genome composition differences among 81 serogroup C isolates which were isolated from 14 provinces of China during 1966—2005. The com-parative genomic hybridization (CGH) result shows that the genome compositions of nearly all sero-group C isolates are similar to that of 053442. The products of many absent open reading frames (ORFs) are conserved hypothetical proteins. The results will provide a valuable resource from which one can analyze the genome composition and genetic background of serogroup C meningococci in China.展开更多
Background: Wolf-Hirschhorn syndrome (WHS) is a contiguous gene syndrome that is typically caused by a deletion of the distal portion of the short arm of chromosome 4. However, there are few reports about the featu...Background: Wolf-Hirschhorn syndrome (WHS) is a contiguous gene syndrome that is typically caused by a deletion of the distal portion of the short arm of chromosome 4. However, there are few reports about the features of Chinese WHS patients. This study aimed to characterize the clinical and molecular cytogenetic features of Chinese WHS patients using the combination of multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (array CGH). Methods: Clinical information was collected from ten patients with WHS. Genomic DNA was extracted from the peripheral blood of the patients. The deletions were analyzed by MLPA and array CGH. Results: All patients exhibited the core clinical symptoms of WHS, including severe growth delay, a Greek warrior helmet facial appearance, differing degrees of intellectual disability, and epilepsy or electroencephalogram anomalies. The 4p deletions ranged from 2.62 Mb to 17.25 Mb in size and included LETM1, WHSC1, and FGFR3. Conclusions: The combined use of MLPA and array CGH is an effective and specific means to diagnose WHS and allows for the precise identification of the breakpoints and sizes of deletions. The deletion of genes in the WHS candidate region is closely correlated with the core WHS phenotype.展开更多
Objective: Identification of colorectal cancer (CRC) metastasis genes is one of the most important issues in CRC research. For the purpose of mining CRC metastasis-associated genes, an integrated analysis of mJcroa...Objective: Identification of colorectal cancer (CRC) metastasis genes is one of the most important issues in CRC research. For the purpose of mining CRC metastasis-associated genes, an integrated analysis of mJcroarray data was presented, by combined with evidence acquired from comparative genornic hybridization (CGH) data. Methods: Gene expression profile data of CRC samples were obtained at Gene Expression Omnibus (GEO) website. The 15 important chromosomal aberration sites detected by using CGH technology were used for integrated genomic and transcriptomic analysis. Significant Analysis of Microarray (SAM) was used to detect significantly differentially expressed genes across the whole genome. The overlapping genes were selected in their corresponding chromosomal aberration regions, and analyzed by using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Finally, SVM-T-RFE gene selection algorithm was applied to identify ted genes in CRC. Results: A minimum gene set was obtained with the minimum number [14] of genes, and the highest classification accuracy (100%) in both PRI and META datasets. A fraction of selected genes are associated with CRC or its metastasis. Conclusions- Our results demonstrated that integration analysis is an effective strategy for mining cancer- associated genes.展开更多
To investigate common chromosomal changes and the LOH frequency of microsatellite loci in primary gastric cancer samples in order to locate the deleted regions in which human gastric cancer related genes might exist ...To investigate common chromosomal changes and the LOH frequency of microsatellite loci in primary gastric cancer samples in order to locate the deleted regions in which human gastric cancer related genes might exist Methods Comparative genomic hybridization (CGH) was used to define global chromosomal aberrations in 43 primary gastric tumors Based on the results of CGH, analysis of loss of heterozygosity (LOH) was performed in chromosome 19 in which the loss was first discovered in the gastric cancers The PCR-based approach was used to investigate 22 loci, which are spaced at 1 1-10 9 cM intervals throughout chromosome 19 The amplified PCR fragments were subjected to electrophoresis in PAGE gel and analyzed with Genescan TM and Genotyper TM Results CGH analysis revealed gains in chromosome 3p(8/43), 8q(8/43), 20 [20 (9/43), 20p(7/43), 20q(4/43)], 12q(16/43), 13q(12/43) and losses in 19 [19 (15/43)], 7 [17 (8/43), 17p (10/43)], 16 (10/43) and 1p (11/43) Among the 43 evaluated samples, the most frequent LOH was detected at locus D19S571 (27 81%) Conclusions The tumorigenesis of gastric cancer includes several chromosomal changes The aberration of chromosome 19 was the first common change founded in gastric cancer The region near the D19S571 might harbor potential genes related to the tumorigenesis of gastric cancer展开更多
Preimplantation genetic testing refers to the procedure to determine the genetic status of embryos formed by in vitro fertilization(IVF) prior to initiating a pregnancy.Traditional genetic methods for preimplantation ...Preimplantation genetic testing refers to the procedure to determine the genetic status of embryos formed by in vitro fertilization(IVF) prior to initiating a pregnancy.Traditional genetic methods for preimplantation genetic diagnosis(PGD) examine distinct parts of an individua genome, require the development of a custom assay for every patient family, and are time consuming and inefficient. In the last decade technologies for wholegenome amplification(WGA) from single cells have led to innovative strategies for preimplantation testing.Applications of WGA technology can lead to a universa approach that uses single-nucleotide polymorphisms(SNPs) and mutations across the entire genome for the analysis. Single-cell WGA by multiple displacement amplification has enabled a linkage approach to PGD known as "preimplantation genetic haplotyping", as well as microarray-based techniques for preimplantation diagnosis. The use of microarrays in preimplantation diagnosis has provided genome-wide testing for gains or losses of single chromosomes(aneuploidies)or chromosomal segments. Properly designed randomized controlled trials are, however, needed to determine whether these new technologies improve IVF outcomes by increasing implantation rates and decreasing mis-carriage rates. In genotype analysis of single cells, allele dropout occurs frequently at heterozygous loci. Preimplantation testing of multiple cells biopsied from blastocysts, however, can reduce allele dropout rates and increase the accuracy of genotyping, but it allows less time for PGD. Future development of fast SNP microarrays will enable a universal preimplantation testing for aneuploidies, single-gene disorders and unbalanced translocations within the time frame of an IVF cycle.展开更多
To systematically estimate the gene duplication events In closely related species, we have to use comparative genomlc approaches, either through genomlc sequence comparison or comparative genomlc hybridization (CGH)...To systematically estimate the gene duplication events In closely related species, we have to use comparative genomlc approaches, either through genomlc sequence comparison or comparative genomlc hybridization (CGH). Given the scarcity of complete genomlc sequences of plant species, in the present study we adopted an array based CGH to Investigate gene duplications In the genus Arabldopsls. Fragment genomlc DNA from four species, namely Arabidopsls thallana, A. lyrata subsp, lyrata, A. lyrata subsp, petraea, and A. halleri, was hybridized to Affymetrlx (Santa Clara, CA, USA) tiling arrays that are designed from the genomlc sequences of A. thallana. Pairwlse comparisons of signal intensity were made to infer the potential duplicated candidates along each phylogenetic branch. Ninety-four potential candidates of gene duplication along the genus were Identified. Among them, the majority (69 of 94) were A. thallana lineage specific. This result indicates that the array based CGH approach may be used to Identify candidates of duplication In other plant genera containing closely related species, such as Oryza, particularly for the AA genome species. We compared the degree of gene duplication through retrotransposon between O. satlva and A. thallana and found a strikingly higher number of chimera retroposed genes In rice. The higher rate of gene duplication through retroposltlon and other mechanisms may Indicate that the grass species Is able to adapt to more diverse environments.展开更多
Prospects for deploying perennial grasses that are currently considered leading candidates for dedicated energy crops over large acreages are debatable because of several limitations, including vegetative propagation ...Prospects for deploying perennial grasses that are currently considered leading candidates for dedicated energy crops over large acreages are debatable because of several limitations, including vegetative propagation or small seed size, low biomass production during the first growing season, and incomplete assessments of crop invasiveness risk. Pearl Millet-Napiergrass hybrids (“PMN”;Pennisetum glaucum [L.] R. Br. × P. purpureum Schumach.), in contrast, are large-seeded, sterile feedstocks capable of high biomass production during establishment year. Novel methods are warranted for confirmation of PMN hybrids, as traditional morphological observations can be inconclusive and chromosome number determination using cytological methods is laborious and time consuming. Six putative PMN lines were produced in this study, and 10 progeny from each line were evaluated using morphological traits, seed fertility, flow cytometry, and expressed sequence tag-simple sequence repeat (EST-SSR) markers. All putative hybrid lines were sterile and failed to produce seed. The PMN hybrids could not be distinguished from either parent using flow cytometry due to highly similar nuclear genome DNA contents. A number of paternal napiergrass-specific EST-SSRs were identified for each PMN line, and four paternal-specific EST-SSRs conserved across all napiergrass accessions were selected to screen the putative PMN hybrids. These EST-SSRs confirmed that all F1 individuals analyzed were PMN hybrids. The use of paternal-specific markers therefore provides a valuable tool in the development of both “Seeded-yet-Sterile” biofuel PMN feedstocks and additional PMN cultivar-and parental species-specific markers.展开更多
文摘Copy number variations have been found in patients with neural tube abnormalities.In this study,we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents.Of eight copy number variations,four were non-polymorphic.These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes,and microcephaly.Gene function enrichment analysis revealed that COX8 C,a gene associated with metabolic disorders of the nervous system,was located in the copy number variation region of Patient 1.Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome.Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease.
基金Supported by The Science and Technology Fund of Henan Health Department, No. 2007-026
文摘AIM: To characterize cytogenetic alterations in esophageal squamous cell carcinoma (ESCC) and its metastasis. METHODS: A total of 37 cases of primary ESCC and 15 pairs of primary ESCC tumors and their matched metastatic lymph nodes cases were enrolled from Linzhou, the high incidence area for ESCC in Henan, northern China. The comparative genomic hybridization (CGH) was applied to determine the chromosomal aberrations on the DNA extracted from the frozen ESCC and metastatic lymph node samples from these patients. RESULTS: CGH showed chromosomal aberrations in all the cases. In 37 cases of primary ESCC, chromosomal profile of DNA copy number was characterized by frequently detected gains at 8q (29/37, 78%), 3q (24/37, 65%), 5p (19/37, 51%); and frequently detected losses at 3p (21/37, 57%), 8p and 9q (14/37, 38%). In 15 pairs of primary ESCC tumors and their matched metastatic lymph node cases, the majority of the chromosomal aberrations in both primary tumor and metastatic lymph node lesions were consistent with the primary ESCC cases, but new candidate regions of interest were also detected. The most significant finding is the gains of chromosome 6p with a minimum high-level amplification region at 6p12-6q12 in 7 metastatic lymph nodes butonly in 2 corresponding primary tumors (P = 0.05) and 20p with a minimum high-level amplification region at 20p12 in 11 metastatic lymph nodes but only in 5 corresponding primary tumors (P < 0.05). Another interesting finding is the loss of chromosome 10p and 10q in 8 and 7 metastatic lymph nodes but only in 2 corresponding primary tumors (P < 0.05). CONCLUSION: Using the CGH technique to detect chromosomal aberrations in both the primary tumor and its metastatic lymph nodes of ESCC, gains of 8q, 3q and 5p and loss of 3p, 8p, 9q and 13q were specifically implicated in ESCC in Linzhou population. Gains of 6p and 20p and loss of 10pq may contribute to the lymph node metastasis of ESCC. These findings suggest that the gains and losses of chromosomal regions may contain ESCC-related oncogenes and tumor suppressor genes and provide important theoretic information for identifying and cloning novel ESCC-related oncogenes and tumor suppressor genes.
文摘The knowledge of the primary origin of tumor is essential in designing an efficient cancer treatment algorithm. Useful diagnostic tools enable determination of primary origin of the tumor;however the majority of them require tissue examination. Recent years, exploration of circulating tumor cells enabled scientists to study different parameters using the painless liquid biopsy. The present study aimed to identify whether aCGH might be used as a diagnostic tool in cancer detecting the primary origin of the tumor. Blood was extracted from healthy individuals and cancer samples and CTCs isolated. DNA extracted from the above samples and aCGH experiments followed. The samples were blinded analyzed and then unmasked to calculate specificity and sensitivity of the method. The sensitivity was 94%, the specificity 88%, while the positive prediction rate of the primary tumor was 72%. aCGH is a powerful tool in cancer diagnosis and treatment plan with high sensitivity and specificity rates. It can be performed from blood sample, which makes it an appropriate method for every patient, mainly for patients with unknown origin of the primary tumor.
文摘Objective To investigate the relationship between genomic DNA imbalance in oligodendroglial tumors and its different classification. Methods 16 oligodendrogliomas and 17 anaplastic oligodendrogliomas were investigated by comparative genomic hybridization on Paraffin-Embedded tissue samples,and the chromosomal genomic DNA imbalances were analyzed. Results Chromosome DNA imbalance rates in oligodendrogliomas
基金ThestudywasgrantedfromNational 973Program (No G19980 5 12 0 2 )andtheNationalExcellentYouthScienceFoundation (typeB No 3 9
文摘Objective To gain a better understanding of genetic changes in Cantonese nasopharyngeal carcinoma (NPC) Methods Comparative genomic hybridization (CGH) was performed on 17 primary nasopharyngeal carcinomas Results A novel copy number gain an chromosome 4q and loss of chromosome 1p were found at a high frequency (>50%) Conclusions Current analysis revealed a comprehensive profile of the chromosomal regions showing gain of chromosomes 4q, 12q, and 1q as well as loss of chromosomes 1p, 3p, 11q, 14q, 15q, 13q, Xq, 9q, 10p, 10q, and 16q Frequently altered loci may encode oncogenes or tumor suppressor genes involved in the development of primary NPC
基金the National NaturalScience Foundation of China (Grant No. 39870423) and the Doctorate Spot Fund of the Ministry of Education (Grant No. 207980112).
文摘Using the genomic DNAs of maize and rice as probes respectively, the homology of maize and rice genomes was assessed by genomic in situ hybridization. When rice genomic DNAs were hybridized to maize, all chromosomes displayed many multiple discrete regions, while each rice chromosome delineated a single consecutive chromosomal region after they were hybridized with maize genomic DNAs. The results indicate that the genomes of maize and rice share high homology, and confirm the proposal that maize and rice are diverged from a common ancestor.
文摘Background Primary ovarian insufficiency (POI) is defined as a primary ovarian defect characterized by absent menarche (primary amenorrhea) or premature depletion of ovarian follicles before the age of 40 years. The etiology of primary ovarian insufficiency in human female patients is still unclear. The purpose of this study is to investigate the potential genetic causes in primary amenorrhea patients by high resolution array based comparative genomic hybridization (array-CGH) analysis. Methods Following the standard karyotyping analysis, genomic DNA from whole blood of 15 primary amenorrhea patients and 15 normal control women was hybridized with Affymetrix cytogenetic 2.7M arrays following the standard protocol. Copy number variations identified by array-CGH were confirmed by real time polymerase chain reaction.
基金partially supported by Guangdong Innovative and Entrepreneurial Research Team Program (No. 201301S0105240297)by 111 Project
文摘Approximately 30% of pregnancies after implantation end up in spontaneous abortions, and 50% of them are caused by chromosomal abnormalities. However, the spectrum of genomic copy number variants (CNVs) in products of conception (POC) and the underlying gene- dosage-sensitive mechanisms causing spontaneous abortions remain largely unknown. In this study, array comparative genornic hybridiza- tion (aCGH) analysis was performed as a salvage procedure for 128 POC culture failure (POC-CF) samples and as a supplemental procedure for 106 POC normal karyotype (POC-NK) samples. Chromosomal abnormalities were detected in 10% of POC-CF and pathogenic CNVs were detected in 3.9% of POC-CF and 5.7% of POC-NK samples. Compiled results from this study and relevant case series through a literature review demonstrated an abnormality detection rate (ADR) of 35% for chromosomal abnormalities in POC-CF samples, 3.7% for pathogenic CNVs in POC-CF samples, and 4.6% for pathogenic CNVs in POC-NK samples. Ingenuity Pathway Analysis (IPA) was performed on the genes from pathogenic CNVs found in POC samples. The denoted primary gene networks suggested that apoptosis and cell proliferation pathways are involved in miscarriage. In summary, a similar spectrum of cytogenomic abnormalities was observed in POC culture success and POC-CF samples. A threshold effect correlating the number of dosage-sensitive genes in a chromosome with the observed frequency of autosomai trisomy is proposed. A rationalized approach using firstly fluorescence in situ hybridization (FISH) testing with probes of chromosomes X/Y/ 18, 13/21, and 15/16/22 for common aneuploidies and polyploidies and secondly aCGH for other cytogenomic abnormalities is recommended for POC-CF samples.
基金This research was supported by a grant from National Natural Science Foundation of China (No. 30560169).
文摘Background Previous cytogenetic studies revealed rhabdomyosarcoma. We profiled chromosomal imbalances aberrations varied among the three subtypes of n the different subtypes and investigated the relationships between clinical parameters and genomic aberrations. Methods Comparative genomic hybridization was used to investigate genomic imbalances in 25 cases of primary rhabdomyosarcomas and two rhabdomyosarcoma cell lines. Specimens were reviewed to determine histological type, pathological grading and clinical staging. Results Changes involving one or more regions of the genome were seen in all rhabdomyosarcomal patients. For rhabdomyosarcoma, DNA sequence gains were most frequently (〉30%) seen in chromosomes 2p, 12q, 6p, 9q, 10q, lp, 2q, 6q, 8q, 15q and 18q; losses from 3p, 11p and 6p. In aggressive alveolar rhabdomyosarcoma, frequent gains were seen on chromosomes 12q, 2p, 6p, 2q, 4q, 10q and 15q; losses from 3p, 6p, lq and 5q. For embryonic rhabdomyosarcoma, frequent gains were on 7p, 9q, 2p, 18q, lp and 8q; losses only from 11p. Frequently gained chromosome arms of translocation associated with rhabdomyosarcoma were 12q, 2, 6, 10q, 4q and 15q; losses from 3p, 6p and 5q. The frequently gained chromosome arms of nontranslocation associated with rhabdomyosarcoma were 2p, 9q and 18q, while 11p and 14q were the frequently lost chromosome arms. Gains on chromosome 12q were significantly correlated with translocation type. Gains on chromosome 9q were significantly correlated with clinical staging. Conclusions Gains on chromosomes 2p, 12q, 6p, 9q, 10q, lp, 2q, 6q, 8q, 15q and 18q and losses on chromosomes 3p, 11p and 6p may be related to rhabdomyosarcomal carcinogenesis. Furthermore, gains on chromosome 12q may be correlated with translocation and gains on chromosome 9q with the early stages of rhabdomyosarcoma.
基金the National High Technology Research and development Program from the Ministry of Science and Technology of China (Grant No. 2005BA711A09)
文摘Neisseria meningitidis is a major cause of bacterial meningitis and septicemia worldwide. In China, serogroup A strains were responsible for over 95% of the cases, while serogroup B strains were mainly the cause of localized outbreaks and sporadic cases. Before 2003, serogroup C strains were only re-covered from a few sporadic cases. However, a sudden increase in the number of cases due to sero-group C strains occurred during 2003—2005 in Anhui Province, China. Many cases were found in other provinces at the same time. Multilocus sequence typing (MLST) results indicated that the unique se-quence type 4821 clone meningococci, a new hyper-virulent lineage, was responsible for the serogroup C meningitis outbreaks. We have completed the project of sequencing the whole genome of the Chi-nese N. meningitidis serogroup C representative isolate 053442. We fabricated a whole-genome mi-croarray of N. meningitidis isolate 053442 and analyzed the genome composition differences among 81 serogroup C isolates which were isolated from 14 provinces of China during 1966—2005. The com-parative genomic hybridization (CGH) result shows that the genome compositions of nearly all sero-group C isolates are similar to that of 053442. The products of many absent open reading frames (ORFs) are conserved hypothetical proteins. The results will provide a valuable resource from which one can analyze the genome composition and genetic background of serogroup C meningococci in China.
文摘Background: Wolf-Hirschhorn syndrome (WHS) is a contiguous gene syndrome that is typically caused by a deletion of the distal portion of the short arm of chromosome 4. However, there are few reports about the features of Chinese WHS patients. This study aimed to characterize the clinical and molecular cytogenetic features of Chinese WHS patients using the combination of multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (array CGH). Methods: Clinical information was collected from ten patients with WHS. Genomic DNA was extracted from the peripheral blood of the patients. The deletions were analyzed by MLPA and array CGH. Results: All patients exhibited the core clinical symptoms of WHS, including severe growth delay, a Greek warrior helmet facial appearance, differing degrees of intellectual disability, and epilepsy or electroencephalogram anomalies. The 4p deletions ranged from 2.62 Mb to 17.25 Mb in size and included LETM1, WHSC1, and FGFR3. Conclusions: The combined use of MLPA and array CGH is an effective and specific means to diagnose WHS and allows for the precise identification of the breakpoints and sizes of deletions. The deletion of genes in the WHS candidate region is closely correlated with the core WHS phenotype.
基金supported by a grant from the National Natural Science Foundation of China(Grant No.61373057)a grant from the Zhejiang Provincial Natural Science Foundation of China(Grant No.Y1110763)
文摘Objective: Identification of colorectal cancer (CRC) metastasis genes is one of the most important issues in CRC research. For the purpose of mining CRC metastasis-associated genes, an integrated analysis of mJcroarray data was presented, by combined with evidence acquired from comparative genornic hybridization (CGH) data. Methods: Gene expression profile data of CRC samples were obtained at Gene Expression Omnibus (GEO) website. The 15 important chromosomal aberration sites detected by using CGH technology were used for integrated genomic and transcriptomic analysis. Significant Analysis of Microarray (SAM) was used to detect significantly differentially expressed genes across the whole genome. The overlapping genes were selected in their corresponding chromosomal aberration regions, and analyzed by using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Finally, SVM-T-RFE gene selection algorithm was applied to identify ted genes in CRC. Results: A minimum gene set was obtained with the minimum number [14] of genes, and the highest classification accuracy (100%) in both PRI and META datasets. A fraction of selected genes are associated with CRC or its metastasis. Conclusions- Our results demonstrated that integration analysis is an effective strategy for mining cancer- associated genes.
文摘To investigate common chromosomal changes and the LOH frequency of microsatellite loci in primary gastric cancer samples in order to locate the deleted regions in which human gastric cancer related genes might exist Methods Comparative genomic hybridization (CGH) was used to define global chromosomal aberrations in 43 primary gastric tumors Based on the results of CGH, analysis of loss of heterozygosity (LOH) was performed in chromosome 19 in which the loss was first discovered in the gastric cancers The PCR-based approach was used to investigate 22 loci, which are spaced at 1 1-10 9 cM intervals throughout chromosome 19 The amplified PCR fragments were subjected to electrophoresis in PAGE gel and analyzed with Genescan TM and Genotyper TM Results CGH analysis revealed gains in chromosome 3p(8/43), 8q(8/43), 20 [20 (9/43), 20p(7/43), 20q(4/43)], 12q(16/43), 13q(12/43) and losses in 19 [19 (15/43)], 7 [17 (8/43), 17p (10/43)], 16 (10/43) and 1p (11/43) Among the 43 evaluated samples, the most frequent LOH was detected at locus D19S571 (27 81%) Conclusions The tumorigenesis of gastric cancer includes several chromosomal changes The aberration of chromosome 19 was the first common change founded in gastric cancer The region near the D19S571 might harbor potential genes related to the tumorigenesis of gastric cancer
基金Supported by Department of Pediatrics,Medical College of Wisconsin,Milwaukee,WI,United States
文摘Preimplantation genetic testing refers to the procedure to determine the genetic status of embryos formed by in vitro fertilization(IVF) prior to initiating a pregnancy.Traditional genetic methods for preimplantation genetic diagnosis(PGD) examine distinct parts of an individua genome, require the development of a custom assay for every patient family, and are time consuming and inefficient. In the last decade technologies for wholegenome amplification(WGA) from single cells have led to innovative strategies for preimplantation testing.Applications of WGA technology can lead to a universa approach that uses single-nucleotide polymorphisms(SNPs) and mutations across the entire genome for the analysis. Single-cell WGA by multiple displacement amplification has enabled a linkage approach to PGD known as "preimplantation genetic haplotyping", as well as microarray-based techniques for preimplantation diagnosis. The use of microarrays in preimplantation diagnosis has provided genome-wide testing for gains or losses of single chromosomes(aneuploidies)or chromosomal segments. Properly designed randomized controlled trials are, however, needed to determine whether these new technologies improve IVF outcomes by increasing implantation rates and decreasing mis-carriage rates. In genotype analysis of single cells, allele dropout occurs frequently at heterozygous loci. Preimplantation testing of multiple cells biopsied from blastocysts, however, can reduce allele dropout rates and increase the accuracy of genotyping, but it allows less time for PGD. Future development of fast SNP microarrays will enable a universal preimplantation testing for aneuploidies, single-gene disorders and unbalanced translocations within the time frame of an IVF cycle.
基金Supported by Fellowships from the Pew Latin American Fellows Program and Conselho Nacional de Desenvolvimento Cientfico e Tecnologico (to MDV), the USA National Science Foundation CAREER award (MCB0238168) and USA National Institutes of Health R01 grants (R01GM065429-01A1 and GM078070-01A1) to ML at the University of Chicago. Publication of this paper is supported by the National Natural Science Foundation of China (30624808).Acknowledgements The authors thank Dr Hedibert F. Lopes (University of Chicago, Graduate School of Business, Chicago, USA) for his discussions regarding the statistical methods, Noboru Jo Sakabe (IQ- USP/LICR-Sao Paulo Branch, Sao Paulo, Brazil) for critical reading of the manuscript. The authors also thank those people who provided seed samples of Arabidopsis: ABRC Stock Center (The 0hio State University, Columbus, 0H 43210, USA), Justin Borevitz (Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637, USA), Daphne Preuss (Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA), Joy Bergelson (Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637, USA), and Mark MacNair (Department of Biological Sciences, University of Exeter, Exeter, EX4 6EZ, UK).
文摘To systematically estimate the gene duplication events In closely related species, we have to use comparative genomlc approaches, either through genomlc sequence comparison or comparative genomlc hybridization (CGH). Given the scarcity of complete genomlc sequences of plant species, in the present study we adopted an array based CGH to Investigate gene duplications In the genus Arabldopsls. Fragment genomlc DNA from four species, namely Arabidopsls thallana, A. lyrata subsp, lyrata, A. lyrata subsp, petraea, and A. halleri, was hybridized to Affymetrlx (Santa Clara, CA, USA) tiling arrays that are designed from the genomlc sequences of A. thallana. Pairwlse comparisons of signal intensity were made to infer the potential duplicated candidates along each phylogenetic branch. Ninety-four potential candidates of gene duplication along the genus were Identified. Among them, the majority (69 of 94) were A. thallana lineage specific. This result indicates that the array based CGH approach may be used to Identify candidates of duplication In other plant genera containing closely related species, such as Oryza, particularly for the AA genome species. We compared the degree of gene duplication through retrotransposon between O. satlva and A. thallana and found a strikingly higher number of chimera retroposed genes In rice. The higher rate of gene duplication through retroposltlon and other mechanisms may Indicate that the grass species Is able to adapt to more diverse environments.
文摘Prospects for deploying perennial grasses that are currently considered leading candidates for dedicated energy crops over large acreages are debatable because of several limitations, including vegetative propagation or small seed size, low biomass production during the first growing season, and incomplete assessments of crop invasiveness risk. Pearl Millet-Napiergrass hybrids (“PMN”;Pennisetum glaucum [L.] R. Br. × P. purpureum Schumach.), in contrast, are large-seeded, sterile feedstocks capable of high biomass production during establishment year. Novel methods are warranted for confirmation of PMN hybrids, as traditional morphological observations can be inconclusive and chromosome number determination using cytological methods is laborious and time consuming. Six putative PMN lines were produced in this study, and 10 progeny from each line were evaluated using morphological traits, seed fertility, flow cytometry, and expressed sequence tag-simple sequence repeat (EST-SSR) markers. All putative hybrid lines were sterile and failed to produce seed. The PMN hybrids could not be distinguished from either parent using flow cytometry due to highly similar nuclear genome DNA contents. A number of paternal napiergrass-specific EST-SSRs were identified for each PMN line, and four paternal-specific EST-SSRs conserved across all napiergrass accessions were selected to screen the putative PMN hybrids. These EST-SSRs confirmed that all F1 individuals analyzed were PMN hybrids. The use of paternal-specific markers therefore provides a valuable tool in the development of both “Seeded-yet-Sterile” biofuel PMN feedstocks and additional PMN cultivar-and parental species-specific markers.