In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arre...In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.展开更多
This paper systematically studies the flashover probability of wind turbine blade lightning arrester and the impact of strong electromagnetic pulses on the local and surrounding wind turbines during lightning strikes....This paper systematically studies the flashover probability of wind turbine blade lightning arrester and the impact of strong electromagnetic pulses on the local and surrounding wind turbines during lightning strikes.The research results indicate that the flashover probability of direct lightning strikes by the wind turbine blade lightning arrester is almost negligible,and the strong electromagnetic pulse of wind turbine blade during lightning strikes has a serious impact on the electronic equipment of the machine,while the impact on the surrounding wind turbine is relatively small.At the same time,the calculation formula for the reflection of lightning current on the carbon brush between the wind turbine hub and the engine compartment during the flashing of the wind turbine blades is provided,and the calculation method for calculating the spatial gradient distribution of electromagnetic field intensity using Biot-Savart Law theorem is applied.The limitations of using wind turbine blades for lightning protection are pointed out,and a technical route for achieving wind turbine lightning safety is proposed,which can be used as a reference for wind turbine lightning protection technicians.展开更多
Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Over...Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Overall,different types of plasticity,including stem cell-driven genesis of new neurons(adult neurogenesis),cells in arrested maturation(dormant neurons),neuro-glial and synaptic plasticity,can coexist and contribute to grant plastic changes in the brain,from a cellular to system level(Benedetti and Couillard-Despres,2022;Bonfanti et al.,2023).展开更多
Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to impr...Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning.展开更多
[Objective] This study was aimed to formulate the quality inspection of diarrhea arresting and dysentery treating dietary traditional Chinese herbal medicines for livestock.[Methods] Physiochemical identification and ...[Objective] This study was aimed to formulate the quality inspection of diarrhea arresting and dysentery treating dietary traditional Chinese herbal medicines for livestock.[Methods] Physiochemical identification and contrast test of UV spectrophotometer qualitative detection were adopted.[Results] The difference in the peak value of maximum adsorption peak detected by diluted water method was greater than 1 nm; the maximum adsorption peak values obtained by the 0.9% hydrochloric acid and 60% ethanol methods had a difference of less than 1 nm,and the secondary adsorption peak values also had a difference of less than 1 nm.[Conclusion] The 0.9% hydrochloric acid and 60% ethanol methods were selected as the quality inspection standards for the preparation of diarrhea arresting and dysentery treating dietary traditional Chinese herbal medicines for livestock.展开更多
Objective: To examine the apoptotic effect of ent-llα-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F), a compound isolated from Pteris semipinnata L (PsL), in human lung cancer A549 cells. Methods: A549 cells were ...Objective: To examine the apoptotic effect of ent-llα-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F), a compound isolated from Pteris semipinnata L (PsL), in human lung cancer A549 cells. Methods: A549 cells were treated with 5F (0-80 lag/ml) for different time periods. Cytotoxicity was examined using a Ml-I- method. Cell cycle was examined using propidium iodide staining. Apoptosis was examined using Hoechst 33258 staining, enzyme-linked immunosorbent assay (ELISA) and caspase-3 activity analysis. Expression of representative apoptosis-related proteins was evaluated by Western blot analysis. Reactive oxygen species (ROS) level was measured using standard protocols. Potential interaction of 5F with cisplatin was also examined. Results: 5F inhibited the proliferation of A549 cells in a concentration- and time-dependent manner. 5F increased the accumulation of cells in sub-G1 phase and arrested the cells in the G2 phase. Exposure to 5F induced morphological changes and DNA fragmentation that are characteristic of apoptosis. The expression of p21 was increased. 5F exposure also increased Bax expression, release of cytochrome c and apoptosis inducing factor (AIF), and activation of caspase-3. 5F significantly sensitized the cells to cisplatin toxicity. Interestingly, treatment with 5F did not increase ROS, but reduced ROS production induced by cisplatin. Conclusion: 5F could inhibit the proliferation of A549 cells by arresting the cells in G2 phase and by inducing mitochondrial-mediated apoptosis.展开更多
BACKGROUND: Numerous studies have shown that magnetic resonance imaging (MRI) can detect survival and migration of super paramagnetic iron oxide-labeled stem cells in models of focal cerebral infarction. OBJECTIVE...BACKGROUND: Numerous studies have shown that magnetic resonance imaging (MRI) can detect survival and migration of super paramagnetic iron oxide-labeled stem cells in models of focal cerebral infarction. OBJECTIVE: To observe distribution of bone marrow mesenchymal stem cells (BMSCs) in a rat model of global brain ischemia following cardiac arrest and resuscitation, and to investigate the feasibility of tracing iron oxide-labeled BMSCs using non-invasive MRI. DESIGN, TIME AND SETTING: The randomized, controlled, molecular imaging study was performed at the Linbaixin Medical Research Center, Second Affiliated Hospital, Sun Yat-sen University, and the Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, China from October 2006 to February 2009. MATERIALS: A total of 40 clean, Sprague Dawley rats, aged 6 weeks and of either gender, were supplied by the Experimental Animal Center, Sun Yat-sen University, China, for isolation of BMSCs. Feridex (iron oxide), Gyroscan Inetra 1.5T MRI system, and cardiopulmonary resuscitation device were used in this study. METHODS: A total of 30 healthy, male Sprague Dawiey rats, aged 6 months, were used to induce ventricular fibrillation using alternating current. After 8 minutes, the rats underwent 6-minute chest compression and mechanical ventilation, followed by electric defibrillation, to establish rat models of global brain ischemia due to cardiac arrest and resuscitation. A total of 24 successful models were randomly assigned to Feridex-labeled and non-labeled groups (n = 12 for each group). At 2 hours after resuscitation, 5 ×10^8 Feridex-labeled BMSCs, with protamine sulfate as a carrier, and 5 ×10^6 non-labeled BMSCs were respectively transplanted into both groups of rats through the right carotid artery (cells were harvested in 1 mL phosphate buffered saline). MAIN OUTCOME MEASURES: Feridex-labeled BMSCs were observed by Prussian blue staining and electron microscopy. Signal intensity, celluar viability, and proliferative capacity of BMSCs were measured using MRI, Trypan blue test, and M-IT assay, respectively. Distribution of transplanted cells was observed in rats utilizing MRI and Prussian blue staining prior to and 1, 3, 7, and 14 days after transplantation. RESULTS: Prussian blue staining displayed many blue granules in the Feridex-labeled BMSCs. High density of iron granules was observed in the cytoplasm under electron microscopy. According to MRI results, and compared with the non-labeled group, the signal intensity was decreased in the Feridex-labeled group (P 〈 0.05). The decrease was most significant in the 50 pg/mL Feridex-labeled group (P 〈 0.01). There were no significant differences in celluar viability and proliferation of BMSCs between the Feridex-labeled and non-labeled groups after 1 week (P 〉 0.05). Low-signal lesions were detected in the rat hippocampus and temporal cortex at 3 days after transplantation. The low-signal lesions were still detectable at 14 days, and positively stained cells were observed in the hippocampus and temporal cortex using Prussian blue staining. There were no significant differences in signal intensity in the non-labeled group. CONCLUSION: BMSC transplantation traversed the blood-brain barrier and distributed into vulnerable zones in a rat model of cardiac arrest-induced global brain ischemia. MRI provided a non-invasive method to in vivo dynamically and spatially trace Feridex-labeled BMSCs after transplantation.展开更多
Continuous expansion of rat neural stem cell lines has not been achieved due to proliferation arrest and spontaneous differentiation in vitro. In the current study, neural precursor cells derived from the subventricul...Continuous expansion of rat neural stem cell lines has not been achieved due to proliferation arrest and spontaneous differentiation in vitro. In the current study, neural precursor cells derived from the subventricular zone of adult rats spontaneously underwent astroglial and oligodendroglial differentiation after limited propagation. This differentiation was largely induced by autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signals. The results showed that, by inhibiting bone morphogenetic protein and platelet derived growth factor signals, adult rat neural precursor cells could be extensively cultured in vitro as tripotent stem cell lines. In addition to adult rat neural stem cells, we found that bone morphogenetic protein antagonists can promote the proliferation of human neural stem cells. Therefore, the present findings illustrated the role of autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signaling in determining neural stem cell self-renewal and differentiation. By antagonizing both signals, the long-term propagation of rat neural stem cell lines can be achieved.展开更多
Aim: To evaluate the effect of a protein synthesis inhibitor cycloheximide on arresting activity in spermato-genesis and sperm count in male rats. Methods: The study used seminiferous tubule (ST) segments from adult r...Aim: To evaluate the effect of a protein synthesis inhibitor cycloheximide on arresting activity in spermato-genesis and sperm count in male rats. Methods: The study used seminiferous tubule (ST) segments from adult rats cultured in vitro with or without cycloheximide to condition culture media, which have been concentrated, size fractioned (30-50 kDa) and administered 7 days to adult rats by intraperitoneal injections. The effects on testicular and epididymal weights, spermatogenesis and epididymal sperm count were determined. Results: The fraction (30-50 kDa), named arresting, obtained from the culture without cycloheximide decreased testicular and epididymal weights (P<0.01) and reduced the epididymal sperm count significantly. Study of the spermatogenic cycle by transillumination showed spermatogenic arrest at stage VII in rats treated with arresting compared to that observed in controls. The length of stage VII in the group receiving the seminiferous tubules culture media with cycloheximide (30-50 KDa CHX-STCM fraction) was similar to control. Conclusion: The difference in the effect may be the result of the presence or absence of arresting, a protein secreted by the tubules.展开更多
In order to solve the thermal stress field around crack tip in metal die when crack prevention using electromagnetic heating, a metal die with a half-embedded round crack was selected as the study object. The complex ...In order to solve the thermal stress field around crack tip in metal die when crack prevention using electromagnetic heating, a metal die with a half-embedded round crack was selected as the study object. The complex function method was used as a basis for the theoretical model of the space crack prevention in metal dies using electromagnetic heating. The crack arrest was accomplished by a pulse current discharge through the inner and outer. The theoretical analysis results show that the temperature around the crack tip rises instantly above the melting point of the metal. Small welded joints are formed at a small sphere near the crack tip inside the metal die by metal melting as a result of the heat concentration effect when the current pulse discharged. The thermal compressive stress field appears around the crack tip at the moment. The research results show that the crack prevention using electromagnetic heating can decrease the stress concentration and forms a compressive stress area around the crack tip, and also prevents the main crack from propagating further, and the goal of crack preventing can be reached.展开更多
Background:Germ cell mitotic arrest is conserved in many vertebrates,including birds,although the time of entry or exit into quiescence phase differs.Mitotic arrest is essential for the normal differentiation of male ...Background:Germ cell mitotic arrest is conserved in many vertebrates,including birds,although the time of entry or exit into quiescence phase differs.Mitotic arrest is essential for the normal differentiation of male germ cells into spermatogonia and accompanies epigenetic reprogramming and meiosis inhibition from embryonic development to post-hatch.However,mitotic arrest was not well studied in chickens because of the difficulty in obtaining pure germ cells from relevant developmental stage.Results:We performed single-cell RNA sequencing to investigate transcriptional dynamics of male germ cells during mitotic arrest in DAZL::GFP chickens.Using differentially expressed gene analysis and K-means clustering to analyze cells at different developmental stages(E12,E16,and hatch),we found that metabolic and signaling pathways were regulated,and that the epigenome was reprogrammed during mitotic arrest.In particular,we found that histone H3K9 and H3K14 acetylation(by HDAC2)and DNA demethylation(by DNMT3B and HELLS)led to a transcriptionally permissive chromatin state.Furthermore,we found that global DNA demethylation occurred gradually after the onset of mitotic arrest,indicating that the epigenetic-reprogramming schedule of the chicken genome differs from that of the mammalian genome.DNA hypomethylation persisted after hatching,and methylation was slowly re-established 3 weeks later.Conclusions:We found a unique epigenetic-reprogramming schedule of mitotic-arrested chicken prospermatogonia and prolonged hypomethylation after hatching.This will provide a foundation for understanding the process of germ-cell epigenetic regulation in several species for which this process is not clearly described.Our findings on the biological processes related to sex-specific differentiation of prospermatogonia could help studying germline development in vitro more elaborately.展开更多
<p> <span><span style="font-family:;" "=""><span>Normal cells must become cancer-enabling before anything else occurs, according to latest literature. The goal in this ...<p> <span><span style="font-family:;" "=""><span>Normal cells must become cancer-enabling before anything else occurs, according to latest literature. The goal in this mini-review is to demonstrate special tetraploidy in the enabling process. This we have shown from genomic damage, DDR (DNA Damage Response) activity with skip of mitosis leading to diploid G2 cells at the G1 border in need of chromatin repair for continued cell cycling to the special tetraploid division system. In several studies</span><span> </span><span>specific methylation transferase genes were activated in normal human cells in tissue fields</span><span>, </span><span>containing different cell growth stages of the cancerous process. Histology studies, in addition to molecular chemistry for identification of oncogenic mutational change</span></span></span><span><span><span>,</span></span></span><span><span><span> w</span></span></span><span><span><span>ere</span></span></span><span><span><span style="font-family:;" "=""><span> a welcome change (see below). In a study on melanoma origin, DDR also showed arrested diploid cells regaining cycling from methylation transferase activity with causation of 2n melanocytes transforming to 4n melanoblasts, giving rise to epigenetic tumorigenesis enabled First Cells. Such First Cells were from Barrett’s esophagus shown to have inherited the unique division system from 4n diplochromosomal cells, first described in mouse ascites cancer cells (below). We discovered that the large nucleus prior to chromosomal division turned 90<span style="color:#4F4F4F;white-space:normal;background-color:#FFFFFF;">°</span> relative to the cytoskeleton axis, and divided genome reductive to diploid, First Cells, in a perpendicular </span><span>orientation to the surrounding normal cells they had originated from. This unique division system was herein shown to occur at metastasis stage, imply</span><span>ing activity throughout the cancerous evolution. Another study showed 4-chromatid tetraploidy in development to B-cell lymphoma, and that such cancer cells also proliferated with participation of this unusual division system. Such participation has long been known from Bloom’s inherited syndrome with repair chiasmas between the four chromatids, also an </span><i><span>in vitro</span></i><span> observation by us. Our cytogenetic approach also revealed that they believed mitotic division in cancer cells is wrong because such cell divisions were found to be from an adaptation between amitosis and mitosis, called amitotic</span></span></span></span><span><span><span>-</span></span></span><span><span><span style="font-family:;" "=""><span>mitosis. Amitosis means division without centrosomes, which has long been known from oral cancer cells, in that MOTCs (microtubule orga</span><span>nizing center) were lacking centrioles. This observation calls for re-introduction </span><span>of karyotype and cell division studies in cancer cell proliferation. It has high probability of contributing novel approaches to cancer control from screening of drugs against the amitotic-mitotic division apparatus.</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span> </p> <span></span><span></span> <p> <span></span> </p>展开更多
Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effe...Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries.Here,we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a“catcher”to arrest active molecules(bound water molecules).The stable solvation structure of[Zn(H_(2)O)_(6)]^(2+)is capable of maintaining and completely inhibiting free water molecules.When[Zn(H_(2)O)_(6)]^(2+)is partially desolvated in the Helmholtz outer layer,the separated active molecules will be arrested by the“catcher”formed by the strong hydrogen bond N-H bond,ensuring the stable desolvation of Zn^(2+).The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm^(-2),Zn||V_(6)O_(13) full battery achieved a capacity retention rate of 99.2%after 10,000 cycles at 10 A g^(-1).This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.展开更多
Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal mus...Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal muscular atrophy-like clinical phenotype.The aims of this study were to determine the mechanism of the severe phenotype caused by the MORC2 p.S87L mutation and to explore potential treatment strategies.Epithelial cells were isolated from urine samples from a spinal muscular atrophy(SMA)-like patient[MORC2 p.S87L),a CMT2Z patient[MORC2 p.Q400R),and a healthy control and induced to generate pluripotent stem cells,which were then differentiated into motor neuron precursor cells.Next-generation RNA sequencing followed by KEGG pathway enrichment analysis revealed that differentially expressed genes involved in the PI3K/Akt and MAP K/ERK signaling pathways were enriched in the p.S87L SMA-like patient group and were significantly downregulated in induced pluripotent stem cells.Reduced proliferation was observed in the induced pluripotent stem cells and motor neuron precursor cells derived from the p.S87L SMA-like patient group compared with the CMT2Z patient group and the healthy control.G0/G1 phase cell cycle arrest was observed in induced pluripotent stem cells derived from the p.S87L SMA-like patient.MORC2 p.S87Lspecific antisense oligonucleotides(p.S87L-ASO-targeting)showed significant efficacy in improving cell prolife ration and activating the PI3K/Akt and MAP K/ERK pathways in induced pluripotent stem cells.Howeve r,p.S87L-ASO-ta rgeting did not rescue prolife ration of motor neuron precursor cells.These findings suggest that downregulation of the PI3K/Akt and MAP K/ERK signaling pathways leading to reduced cell proliferation and G0/G1 phase cell cycle arrest in induced pluripotent stem cells might be the underlying mechanism of the severe p.S87L SMA-like phenotype.p.S87L-ASO-targeting treatment can alleviate disordered cell proliferation in the early stage of pluripotent stem cell induction.展开更多
BACKGROUND:We aimed to observe the dynamic changes in glucose metabolic reprogrammingrelated parameters and their ability to predict neurological prognosis and all-cause mortality in cardiac arrest patients after the ...BACKGROUND:We aimed to observe the dynamic changes in glucose metabolic reprogrammingrelated parameters and their ability to predict neurological prognosis and all-cause mortality in cardiac arrest patients after the restoration of spontaneous circulation(ROSC).METHODS:Adult cardiac arrest patients after ROSC who were admitted to the emergency or cardiac intensive care unit of the First Aflliated Hospital of Dalian Medical University from August 1,2017,to May 30,2021,were enrolled.According to 28-day survival,the patients were divided into a non-survival group(n=82) and a survival group(n=38).Healthy adult volunteers(n=40) of similar ages and sexes were selected as controls.The serum levels of glucose metabolic reprogrammingrelated parameters(lactate dehydrogenase [LDH],lactate and pyruvate),neuron-specific enolase(NSE) and interleukin 6(IL-6) were measured on days 1,3,and 7 after ROSC.The Acute Physiology and Chronic Health Evaluation II(APACHE II) score and Sequential Organ Failure Assessment(SOFA) score were calculated.The Cerebral Performance Category(CPC) score was recorded on day 28 after ROSC.RESULTS:Following ROSC,the serum LDH(607.0 U/L vs.286.5 U/L),lactate(5.0 mmol/L vs.2.0 mmol/L),pyruvate(178.0 μmol/L vs.70.9 μmol/L),and lactate/pyruvate ratio(34.1 vs.22.1) significantly increased and were higher in the non-survivors than in the survivors on admission(all P<0.05).Moreover,the serum LDH,pyruvate,IL-6,APACHE II score,and SOFA score on days 1,3 and 7 after ROSC were significantly associated with 28-day poor neurological prognosis and 28-day all-cause mortality(all P<0.05).The serum LDH concentration on day 1 after ROSC had an area under the receiver operating characteristic curve(AUC) of 0.904 [95% confidence interval [95% CI]:0.851–0.957]) with 96.8% specificity for predicting 28-day neurological prognosis and an AUC of 0.950(95% CI:0.911–0.989) with 94.7% specificity for predicting 28-day all-cause mortality,which was the highest among the glucose metabolic reprogramming-related parameters tested.CONCLUSION:Serum parameters related to glucose metabolic reprogramming were significantly increased after ROSC.Increased serum LDH and pyruvate levels,and lactate/pyruvate ratio may be associated with 28-day poor neurological prognosis and all-cause mortality after ROSC,and the predictive eflcacy of LDH during the first week was superior to others.展开更多
The post-resuscitation period is recognized as the main predictor of cardiopul-monary resuscitation(CPR)outcomes.The first description of post-resuscitation syndrome and stony heart was published over 50 years ago.Maj...The post-resuscitation period is recognized as the main predictor of cardiopul-monary resuscitation(CPR)outcomes.The first description of post-resuscitation syndrome and stony heart was published over 50 years ago.Major manifestations may include but are not limited to,persistent precipitating pathology,systemic ischemia/reperfusion response,post-cardiac arrest brain injury,and finally,post-cardiac arrest myocardial dysfunction(PAMD)after successful resuscitation.Why do some patients initially survive successful resuscitation,and others do not?Also,why does the myocardium response vary after resuscitation?These ques-tions have kept scientists busy for several decades since the first successful resuscitation was described.By modifying the conventional modalities of resu-scitation together with new promising agents,rescuers will be able to salvage the jeopardized post-resuscitation myocardium and prevent its progression to a dismal,stony heart.Community awareness and staff education are crucial for shortening the resuscitation time and improving short-and long-term outcomes.Awareness of these components before and early after the restoration of circulation will enhance the resuscitation outcomes.This review extensively addresses the underlying pathophysiology,management,and outcomes of post-resuscitation syndrome.The pattern,management,and outcome of PAMD and post-cardiac arrest shock are different based on many factors,including in-hospital cardiac arrest vs out-of-hospital cardiac arrest(OHCA),witnessed vs unwitnessed cardiac arrest,the underlying cause of arrest,the duration,and protocol used for CPR.Although restoring spontaneous circulation is a vital sign,it should not be the end of the game or lone primary outcome;it calls for better understanding and aggressive multi-disciplinary interventions and care.The development of stony heart post-CPR and OHCA remain the main challenges in emergency and critical care medicine.展开更多
Objective Endometrial carcinoma(EC)is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates.This underscores the critical need for novel therapeutic targets.One such potential ...Objective Endometrial carcinoma(EC)is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates.This underscores the critical need for novel therapeutic targets.One such potential target is cell division cycle 20(CDC20),which has been implicated in oncogenesis.This study investigated the effect of the CDC20 inhibitor Apcin on EC and elucidated the underlying mechanism involved.Methods The effects of Apcin on EC cell proliferation,apoptosis,and the cell cycle were evaluated using CCK8 assays and flow cytometry.RNA sequencing(RNA-seq)was subsequently conducted to explore the underlying molecular mechanism,and Western blotting and coimmunoprecipitation were subsequently performed to validate the results.Animal studies were performed to evaluate the antitumor effects in vivo.Bioinformatics analysis was also conducted to identify CDC20 as a potential therapeutic target in EC.Results Treatment with Apcin inhibited proliferation and induced apoptosis in EC cells,resulting in cell cycle arrest.Pathways associated with apoptosis and the cell cycle were activated following treatment with Apcin.Notably,Apcin treatment led to the upregulation of the cell cycle regulator p21,which was verified to interact with CDC20 and consequently decrease the expression of downstream cyclins in EC cells.In vivo experiments confirmed that Apcin treatment significantly impeded tumor growth.Higher CDC20 expression was observed in EC tissue than in nonmalignant tissue,and increased CDC20 expression in EC patients was associated with shorter overall survival and progress free interval.Conclusion CDC20 is a novel molecular target in EC,and Apcin could be developed as a candidate antitumor drug for EC treatment.展开更多
Objective:To examine the inhibitory effect of Hydrangea serrata extract against hepatocellular carcinoma HepG2 cells and its underlying mechanisms.Methods:The effects of Hydrangea serrata extract on growth inhibition ...Objective:To examine the inhibitory effect of Hydrangea serrata extract against hepatocellular carcinoma HepG2 cells and its underlying mechanisms.Methods:The effects of Hydrangea serrata extract on growth inhibition of tumor cells and spheroids were assessed using MTT and 3D culture assays.Quantitative real-time PCR and Western blot analyses were employed to investigate the changes in mRNA and protein expression levels of molecules related to cell cycle and apoptosis.Results:Hydrangea serrata extract effectively inhibited the growth of both tumor cells and spheroids.The extract also significantly upregulated p27 mRNA expression and downregulated CDK2 mRNA expression,leading to cell cycle arrest.Moreover,increased BAX/Bcl-2 ratio as well as caspase-9 and-3 were observed after treatment with Hydrangea serrata extract,indicating the induction of tumor cell apoptosis.Conclusions:Hydrangea serrata extract has the potential to alleviate tumors by effectively modulating cell-cycle-related gene expressions and inducing apoptosis,thereby inhibiting tumor growth.展开更多
BACKGROUND:Unsustained return of spontaneous circulation(ROSC)is a critical barrier to survival in cardiac arrest patients.This study examined whether end-tidal carbon dioxide(ETCO_(2))and pulse oximetry photoplethysm...BACKGROUND:Unsustained return of spontaneous circulation(ROSC)is a critical barrier to survival in cardiac arrest patients.This study examined whether end-tidal carbon dioxide(ETCO_(2))and pulse oximetry photoplethysmogram(POP)parameters can be used to identify unsustained ROSC.METHODS:We conducted a multicenter observational prospective cohort study of consecutive patients with cardiac arrest from 2013 to 2014.Patients’general information,ETCO_(2),and POP parameters were collected and statistically analyzed.RESULTS:The included 105 ROSC episodes(from 80 cardiac arrest patients)comprised 51 sustained ROSC episodes and 54 unsustained ROSC episodes.The 24-hour survival rate was significantly higher in the sustained ROSC group than in the unsustained ROSC group(29.2%vs.9.4%,P<0.05).The logistic regression analysis showed that the difference between after and before ROSC in ETCO_(2)(ΔETCO_(2))and the difference between after and before ROCS in area under the curve of POP(ΔAUCp)were independently associated with sustained ROSC(odds ratio[OR]=0.931,95%confi dence interval[95%CI]0.881-0.984,P=0.011 and OR=0.998,95%CI 0.997-0.999,P<0.001).The area under the receiver operating characteristic curve ofΔETCO_(2),ΔAUCp,and the combination of both to predict unsustained ROSC were 0.752(95%CI 0.660-0.844),0.883(95%CI 0.818-0.948),and 0.902(95%CI 0.842-0.962),respectively.CONCLUSION:Patients with unsustained ROSC have a poor prognosis.The combination ofΔETCO_(2) andΔAUCp showed signifi cant predictive value for unsustained ROSC.展开更多
BACKGROUND Simple bone cysts(SBC)are benign tumor-like bone lesions typically identified in children.While SBC may lead to growth disturbances or growth arrest,such cases are uncommon.The mechanisms behind these obser...BACKGROUND Simple bone cysts(SBC)are benign tumor-like bone lesions typically identified in children.While SBC may lead to growth disturbances or growth arrest,such cases are uncommon.The mechanisms behind these observations remain unclear.Additionally,research on the etiology of SBC remains inconclusive,and there has been no consensus on the appropriate timing and methodology for treatment.CASE SUMMARY Here,we present our experience in the successful surgical management of a 10-year-old girl with SBC,who presented with a pathological fracture complicated by malunion of the displaced fracture,varus deformity,and limb length discrepancy.We hypothesized two possible etiologies for the patient’s growth arrest and subsequent humerus varus deformity:(1)Direct disruption of the physis by fluid from the cyst itself;and(2)damage to the epiphysis due to repetitive pathological fractures associated with SBC.In addressing this case,surgical intervention was undertaken to correct the proximal humerus varus deformity.This approach offered the advantages of simultaneously correcting angular abnormalities,achieving mild limb lengthening,providing definitive SBC treatment,and reducing the overall treatment duration.CONCLUSION As per current literature,acute correction of acute angular deformity in proximal humeral SBC is not well comprehended.However,in this specific case,acute correction was considered an optimal solution.展开更多
文摘In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.
基金Research Project on Lightning Protection Technology for 35 kV Collector Lines in Wuxuan Qinglan Wind Farm(SFC/WXY-ZX-FW-23-008)Strong Electromagnetic Pulse Protection(Lightning)Effect in Guangdong Yuedian Zhuhai Biqing Bay Sea Wind Field and Real-time Monitoring Technology Research and Development Project of Grounding ResistanceResearch and Application Demonstration Project of Lightning Protection Technology for Offshore and Island Wind Field of China General Nuclear New Energy South China Branch.
文摘This paper systematically studies the flashover probability of wind turbine blade lightning arrester and the impact of strong electromagnetic pulses on the local and surrounding wind turbines during lightning strikes.The research results indicate that the flashover probability of direct lightning strikes by the wind turbine blade lightning arrester is almost negligible,and the strong electromagnetic pulse of wind turbine blade during lightning strikes has a serious impact on the electronic equipment of the machine,while the impact on the surrounding wind turbine is relatively small.At the same time,the calculation formula for the reflection of lightning current on the carbon brush between the wind turbine hub and the engine compartment during the flashing of the wind turbine blades is provided,and the calculation method for calculating the spatial gradient distribution of electromagnetic field intensity using Biot-Savart Law theorem is applied.The limitations of using wind turbine blades for lightning protection are pointed out,and a technical route for achieving wind turbine lightning safety is proposed,which can be used as a reference for wind turbine lightning protection technicians.
基金supported by Progetto Trapezio,Compagnia di San Paolo(67935-2021.2174)to LB,Fondazione CRT(Cassa di Risparmio di Torino,RF=2022.0618)to LB。
文摘Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Overall,different types of plasticity,including stem cell-driven genesis of new neurons(adult neurogenesis),cells in arrested maturation(dormant neurons),neuro-glial and synaptic plasticity,can coexist and contribute to grant plastic changes in the brain,from a cellular to system level(Benedetti and Couillard-Despres,2022;Bonfanti et al.,2023).
基金supported by the Natural Science Fund of Fujian Province,No.2020J011058(to JK)the Project of Fujian Provincial Hospital for High-level Hospital Construction,No.2020HSJJ12(to JK)+1 种基金the Fujian Provincial Finance Department Special Fund,No.(2021)848(to FC)the Fujian Provincial Major Scientific and Technological Special Projects on Health,No.2022ZD01008(to FC).
文摘Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning.
基金Supported by the Science and Technology Major Project of Guizhou Province (Qiankehe Major Special Projects(2007)6013)~~
文摘[Objective] This study was aimed to formulate the quality inspection of diarrhea arresting and dysentery treating dietary traditional Chinese herbal medicines for livestock.[Methods] Physiochemical identification and contrast test of UV spectrophotometer qualitative detection were adopted.[Results] The difference in the peak value of maximum adsorption peak detected by diluted water method was greater than 1 nm; the maximum adsorption peak values obtained by the 0.9% hydrochloric acid and 60% ethanol methods had a difference of less than 1 nm,and the secondary adsorption peak values also had a difference of less than 1 nm.[Conclusion] The 0.9% hydrochloric acid and 60% ethanol methods were selected as the quality inspection standards for the preparation of diarrhea arresting and dysentery treating dietary traditional Chinese herbal medicines for livestock.
基金supported by the National Natural Science Foundation of China(No.3987099)the Guangdong-Hong Kong Technology Cooperation Funding Scheme(No.GHP/022/06)the Research Committee,Guangdong Medica College(No.XB0601)
文摘Objective: To examine the apoptotic effect of ent-llα-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F), a compound isolated from Pteris semipinnata L (PsL), in human lung cancer A549 cells. Methods: A549 cells were treated with 5F (0-80 lag/ml) for different time periods. Cytotoxicity was examined using a Ml-I- method. Cell cycle was examined using propidium iodide staining. Apoptosis was examined using Hoechst 33258 staining, enzyme-linked immunosorbent assay (ELISA) and caspase-3 activity analysis. Expression of representative apoptosis-related proteins was evaluated by Western blot analysis. Reactive oxygen species (ROS) level was measured using standard protocols. Potential interaction of 5F with cisplatin was also examined. Results: 5F inhibited the proliferation of A549 cells in a concentration- and time-dependent manner. 5F increased the accumulation of cells in sub-G1 phase and arrested the cells in the G2 phase. Exposure to 5F induced morphological changes and DNA fragmentation that are characteristic of apoptosis. The expression of p21 was increased. 5F exposure also increased Bax expression, release of cytochrome c and apoptosis inducing factor (AIF), and activation of caspase-3. 5F significantly sensitized the cells to cisplatin toxicity. Interestingly, treatment with 5F did not increase ROS, but reduced ROS production induced by cisplatin. Conclusion: 5F could inhibit the proliferation of A549 cells by arresting the cells in G2 phase and by inducing mitochondrial-mediated apoptosis.
基金the National Natural Science Foundation of China,No.30801081, 30870691,30700303the New Teacher Foundation of Doctor Center of Ministry of Education of China,No. 200805581179
文摘BACKGROUND: Numerous studies have shown that magnetic resonance imaging (MRI) can detect survival and migration of super paramagnetic iron oxide-labeled stem cells in models of focal cerebral infarction. OBJECTIVE: To observe distribution of bone marrow mesenchymal stem cells (BMSCs) in a rat model of global brain ischemia following cardiac arrest and resuscitation, and to investigate the feasibility of tracing iron oxide-labeled BMSCs using non-invasive MRI. DESIGN, TIME AND SETTING: The randomized, controlled, molecular imaging study was performed at the Linbaixin Medical Research Center, Second Affiliated Hospital, Sun Yat-sen University, and the Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, China from October 2006 to February 2009. MATERIALS: A total of 40 clean, Sprague Dawley rats, aged 6 weeks and of either gender, were supplied by the Experimental Animal Center, Sun Yat-sen University, China, for isolation of BMSCs. Feridex (iron oxide), Gyroscan Inetra 1.5T MRI system, and cardiopulmonary resuscitation device were used in this study. METHODS: A total of 30 healthy, male Sprague Dawiey rats, aged 6 months, were used to induce ventricular fibrillation using alternating current. After 8 minutes, the rats underwent 6-minute chest compression and mechanical ventilation, followed by electric defibrillation, to establish rat models of global brain ischemia due to cardiac arrest and resuscitation. A total of 24 successful models were randomly assigned to Feridex-labeled and non-labeled groups (n = 12 for each group). At 2 hours after resuscitation, 5 ×10^8 Feridex-labeled BMSCs, with protamine sulfate as a carrier, and 5 ×10^6 non-labeled BMSCs were respectively transplanted into both groups of rats through the right carotid artery (cells were harvested in 1 mL phosphate buffered saline). MAIN OUTCOME MEASURES: Feridex-labeled BMSCs were observed by Prussian blue staining and electron microscopy. Signal intensity, celluar viability, and proliferative capacity of BMSCs were measured using MRI, Trypan blue test, and M-IT assay, respectively. Distribution of transplanted cells was observed in rats utilizing MRI and Prussian blue staining prior to and 1, 3, 7, and 14 days after transplantation. RESULTS: Prussian blue staining displayed many blue granules in the Feridex-labeled BMSCs. High density of iron granules was observed in the cytoplasm under electron microscopy. According to MRI results, and compared with the non-labeled group, the signal intensity was decreased in the Feridex-labeled group (P 〈 0.05). The decrease was most significant in the 50 pg/mL Feridex-labeled group (P 〈 0.01). There were no significant differences in celluar viability and proliferation of BMSCs between the Feridex-labeled and non-labeled groups after 1 week (P 〉 0.05). Low-signal lesions were detected in the rat hippocampus and temporal cortex at 3 days after transplantation. The low-signal lesions were still detectable at 14 days, and positively stained cells were observed in the hippocampus and temporal cortex using Prussian blue staining. There were no significant differences in signal intensity in the non-labeled group. CONCLUSION: BMSC transplantation traversed the blood-brain barrier and distributed into vulnerable zones in a rat model of cardiac arrest-induced global brain ischemia. MRI provided a non-invasive method to in vivo dynamically and spatially trace Feridex-labeled BMSCs after transplantation.
基金the National Natural Science Foundation of China,No.81000518China Postdoctoral Science Foundation,No.201003237+2 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of ChinaShanghai Pujiang Program by Science and Technology Commission of Shanghai Municipality,No. 09PJ1408300Key Basic Research Project by Science and Technology Commission of Shanghai Municipality,No. 10JC1402300
文摘Continuous expansion of rat neural stem cell lines has not been achieved due to proliferation arrest and spontaneous differentiation in vitro. In the current study, neural precursor cells derived from the subventricular zone of adult rats spontaneously underwent astroglial and oligodendroglial differentiation after limited propagation. This differentiation was largely induced by autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signals. The results showed that, by inhibiting bone morphogenetic protein and platelet derived growth factor signals, adult rat neural precursor cells could be extensively cultured in vitro as tripotent stem cell lines. In addition to adult rat neural stem cells, we found that bone morphogenetic protein antagonists can promote the proliferation of human neural stem cells. Therefore, the present findings illustrated the role of autocrine or paracrine bone morphogenetic protein and platelet derived growth factor signaling in determining neural stem cell self-renewal and differentiation. By antagonizing both signals, the long-term propagation of rat neural stem cell lines can be achieved.
文摘Aim: To evaluate the effect of a protein synthesis inhibitor cycloheximide on arresting activity in spermato-genesis and sperm count in male rats. Methods: The study used seminiferous tubule (ST) segments from adult rats cultured in vitro with or without cycloheximide to condition culture media, which have been concentrated, size fractioned (30-50 kDa) and administered 7 days to adult rats by intraperitoneal injections. The effects on testicular and epididymal weights, spermatogenesis and epididymal sperm count were determined. Results: The fraction (30-50 kDa), named arresting, obtained from the culture without cycloheximide decreased testicular and epididymal weights (P<0.01) and reduced the epididymal sperm count significantly. Study of the spermatogenic cycle by transillumination showed spermatogenic arrest at stage VII in rats treated with arresting compared to that observed in controls. The length of stage VII in the group receiving the seminiferous tubules culture media with cycloheximide (30-50 KDa CHX-STCM fraction) was similar to control. Conclusion: The difference in the effect may be the result of the presence or absence of arresting, a protein secreted by the tubules.
基金Project supported by the National Natural Science Foundation of China (No.50275128)the Natural Science Foundation of Hebei Province of China (No.599255)
文摘In order to solve the thermal stress field around crack tip in metal die when crack prevention using electromagnetic heating, a metal die with a half-embedded round crack was selected as the study object. The complex function method was used as a basis for the theoretical model of the space crack prevention in metal dies using electromagnetic heating. The crack arrest was accomplished by a pulse current discharge through the inner and outer. The theoretical analysis results show that the temperature around the crack tip rises instantly above the melting point of the metal. Small welded joints are formed at a small sphere near the crack tip inside the metal die by metal melting as a result of the heat concentration effect when the current pulse discharged. The thermal compressive stress field appears around the crack tip at the moment. The research results show that the crack prevention using electromagnetic heating can decrease the stress concentration and forms a compressive stress area around the crack tip, and also prevents the main crack from propagating further, and the goal of crack preventing can be reached.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP)(No.2015R1A3A2033826).
文摘Background:Germ cell mitotic arrest is conserved in many vertebrates,including birds,although the time of entry or exit into quiescence phase differs.Mitotic arrest is essential for the normal differentiation of male germ cells into spermatogonia and accompanies epigenetic reprogramming and meiosis inhibition from embryonic development to post-hatch.However,mitotic arrest was not well studied in chickens because of the difficulty in obtaining pure germ cells from relevant developmental stage.Results:We performed single-cell RNA sequencing to investigate transcriptional dynamics of male germ cells during mitotic arrest in DAZL::GFP chickens.Using differentially expressed gene analysis and K-means clustering to analyze cells at different developmental stages(E12,E16,and hatch),we found that metabolic and signaling pathways were regulated,and that the epigenome was reprogrammed during mitotic arrest.In particular,we found that histone H3K9 and H3K14 acetylation(by HDAC2)and DNA demethylation(by DNMT3B and HELLS)led to a transcriptionally permissive chromatin state.Furthermore,we found that global DNA demethylation occurred gradually after the onset of mitotic arrest,indicating that the epigenetic-reprogramming schedule of the chicken genome differs from that of the mammalian genome.DNA hypomethylation persisted after hatching,and methylation was slowly re-established 3 weeks later.Conclusions:We found a unique epigenetic-reprogramming schedule of mitotic-arrested chicken prospermatogonia and prolonged hypomethylation after hatching.This will provide a foundation for understanding the process of germ-cell epigenetic regulation in several species for which this process is not clearly described.Our findings on the biological processes related to sex-specific differentiation of prospermatogonia could help studying germline development in vitro more elaborately.
文摘<p> <span><span style="font-family:;" "=""><span>Normal cells must become cancer-enabling before anything else occurs, according to latest literature. The goal in this mini-review is to demonstrate special tetraploidy in the enabling process. This we have shown from genomic damage, DDR (DNA Damage Response) activity with skip of mitosis leading to diploid G2 cells at the G1 border in need of chromatin repair for continued cell cycling to the special tetraploid division system. In several studies</span><span> </span><span>specific methylation transferase genes were activated in normal human cells in tissue fields</span><span>, </span><span>containing different cell growth stages of the cancerous process. Histology studies, in addition to molecular chemistry for identification of oncogenic mutational change</span></span></span><span><span><span>,</span></span></span><span><span><span> w</span></span></span><span><span><span>ere</span></span></span><span><span><span style="font-family:;" "=""><span> a welcome change (see below). In a study on melanoma origin, DDR also showed arrested diploid cells regaining cycling from methylation transferase activity with causation of 2n melanocytes transforming to 4n melanoblasts, giving rise to epigenetic tumorigenesis enabled First Cells. Such First Cells were from Barrett’s esophagus shown to have inherited the unique division system from 4n diplochromosomal cells, first described in mouse ascites cancer cells (below). We discovered that the large nucleus prior to chromosomal division turned 90<span style="color:#4F4F4F;white-space:normal;background-color:#FFFFFF;">°</span> relative to the cytoskeleton axis, and divided genome reductive to diploid, First Cells, in a perpendicular </span><span>orientation to the surrounding normal cells they had originated from. This unique division system was herein shown to occur at metastasis stage, imply</span><span>ing activity throughout the cancerous evolution. Another study showed 4-chromatid tetraploidy in development to B-cell lymphoma, and that such cancer cells also proliferated with participation of this unusual division system. Such participation has long been known from Bloom’s inherited syndrome with repair chiasmas between the four chromatids, also an </span><i><span>in vitro</span></i><span> observation by us. Our cytogenetic approach also revealed that they believed mitotic division in cancer cells is wrong because such cell divisions were found to be from an adaptation between amitosis and mitosis, called amitotic</span></span></span></span><span><span><span>-</span></span></span><span><span><span style="font-family:;" "=""><span>mitosis. Amitosis means division without centrosomes, which has long been known from oral cancer cells, in that MOTCs (microtubule orga</span><span>nizing center) were lacking centrioles. This observation calls for re-introduction </span><span>of karyotype and cell division studies in cancer cell proliferation. It has high probability of contributing novel approaches to cancer control from screening of drugs against the amitotic-mitotic division apparatus.</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span> </p> <span></span><span></span> <p> <span></span> </p>
基金supported by the National Natural Science Foundation of China(No.52272198 and 52002122)the Project funded by China Postdoctoral Science Foundation(No.2021M690947).
文摘Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries.Here,we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a“catcher”to arrest active molecules(bound water molecules).The stable solvation structure of[Zn(H_(2)O)_(6)]^(2+)is capable of maintaining and completely inhibiting free water molecules.When[Zn(H_(2)O)_(6)]^(2+)is partially desolvated in the Helmholtz outer layer,the separated active molecules will be arrested by the“catcher”formed by the strong hydrogen bond N-H bond,ensuring the stable desolvation of Zn^(2+).The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm^(-2),Zn||V_(6)O_(13) full battery achieved a capacity retention rate of 99.2%after 10,000 cycles at 10 A g^(-1).This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.
基金supported by the National Natural Science Foundation of China,Nos.82171172(to RZ)and 81771366(to RZ)Fundamental Research Funds for the Central Universities of Central South University,Nos.2021zzts1095(to SZ)and 2022zzts0832(to HY)。
文摘Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal muscular atrophy-like clinical phenotype.The aims of this study were to determine the mechanism of the severe phenotype caused by the MORC2 p.S87L mutation and to explore potential treatment strategies.Epithelial cells were isolated from urine samples from a spinal muscular atrophy(SMA)-like patient[MORC2 p.S87L),a CMT2Z patient[MORC2 p.Q400R),and a healthy control and induced to generate pluripotent stem cells,which were then differentiated into motor neuron precursor cells.Next-generation RNA sequencing followed by KEGG pathway enrichment analysis revealed that differentially expressed genes involved in the PI3K/Akt and MAP K/ERK signaling pathways were enriched in the p.S87L SMA-like patient group and were significantly downregulated in induced pluripotent stem cells.Reduced proliferation was observed in the induced pluripotent stem cells and motor neuron precursor cells derived from the p.S87L SMA-like patient group compared with the CMT2Z patient group and the healthy control.G0/G1 phase cell cycle arrest was observed in induced pluripotent stem cells derived from the p.S87L SMA-like patient.MORC2 p.S87Lspecific antisense oligonucleotides(p.S87L-ASO-targeting)showed significant efficacy in improving cell prolife ration and activating the PI3K/Akt and MAP K/ERK pathways in induced pluripotent stem cells.Howeve r,p.S87L-ASO-ta rgeting did not rescue prolife ration of motor neuron precursor cells.These findings suggest that downregulation of the PI3K/Akt and MAP K/ERK signaling pathways leading to reduced cell proliferation and G0/G1 phase cell cycle arrest in induced pluripotent stem cells might be the underlying mechanism of the severe p.S87L SMA-like phenotype.p.S87L-ASO-targeting treatment can alleviate disordered cell proliferation in the early stage of pluripotent stem cell induction.
基金funded by the Shenzhen Science and Technology Program (JCYJ20230807112007014)Shenzhen Key Medical Discipline Construction Fund (SZXK046)。
文摘BACKGROUND:We aimed to observe the dynamic changes in glucose metabolic reprogrammingrelated parameters and their ability to predict neurological prognosis and all-cause mortality in cardiac arrest patients after the restoration of spontaneous circulation(ROSC).METHODS:Adult cardiac arrest patients after ROSC who were admitted to the emergency or cardiac intensive care unit of the First Aflliated Hospital of Dalian Medical University from August 1,2017,to May 30,2021,were enrolled.According to 28-day survival,the patients were divided into a non-survival group(n=82) and a survival group(n=38).Healthy adult volunteers(n=40) of similar ages and sexes were selected as controls.The serum levels of glucose metabolic reprogrammingrelated parameters(lactate dehydrogenase [LDH],lactate and pyruvate),neuron-specific enolase(NSE) and interleukin 6(IL-6) were measured on days 1,3,and 7 after ROSC.The Acute Physiology and Chronic Health Evaluation II(APACHE II) score and Sequential Organ Failure Assessment(SOFA) score were calculated.The Cerebral Performance Category(CPC) score was recorded on day 28 after ROSC.RESULTS:Following ROSC,the serum LDH(607.0 U/L vs.286.5 U/L),lactate(5.0 mmol/L vs.2.0 mmol/L),pyruvate(178.0 μmol/L vs.70.9 μmol/L),and lactate/pyruvate ratio(34.1 vs.22.1) significantly increased and were higher in the non-survivors than in the survivors on admission(all P<0.05).Moreover,the serum LDH,pyruvate,IL-6,APACHE II score,and SOFA score on days 1,3 and 7 after ROSC were significantly associated with 28-day poor neurological prognosis and 28-day all-cause mortality(all P<0.05).The serum LDH concentration on day 1 after ROSC had an area under the receiver operating characteristic curve(AUC) of 0.904 [95% confidence interval [95% CI]:0.851–0.957]) with 96.8% specificity for predicting 28-day neurological prognosis and an AUC of 0.950(95% CI:0.911–0.989) with 94.7% specificity for predicting 28-day all-cause mortality,which was the highest among the glucose metabolic reprogramming-related parameters tested.CONCLUSION:Serum parameters related to glucose metabolic reprogramming were significantly increased after ROSC.Increased serum LDH and pyruvate levels,and lactate/pyruvate ratio may be associated with 28-day poor neurological prognosis and all-cause mortality after ROSC,and the predictive eflcacy of LDH during the first week was superior to others.
文摘The post-resuscitation period is recognized as the main predictor of cardiopul-monary resuscitation(CPR)outcomes.The first description of post-resuscitation syndrome and stony heart was published over 50 years ago.Major manifestations may include but are not limited to,persistent precipitating pathology,systemic ischemia/reperfusion response,post-cardiac arrest brain injury,and finally,post-cardiac arrest myocardial dysfunction(PAMD)after successful resuscitation.Why do some patients initially survive successful resuscitation,and others do not?Also,why does the myocardium response vary after resuscitation?These ques-tions have kept scientists busy for several decades since the first successful resuscitation was described.By modifying the conventional modalities of resu-scitation together with new promising agents,rescuers will be able to salvage the jeopardized post-resuscitation myocardium and prevent its progression to a dismal,stony heart.Community awareness and staff education are crucial for shortening the resuscitation time and improving short-and long-term outcomes.Awareness of these components before and early after the restoration of circulation will enhance the resuscitation outcomes.This review extensively addresses the underlying pathophysiology,management,and outcomes of post-resuscitation syndrome.The pattern,management,and outcome of PAMD and post-cardiac arrest shock are different based on many factors,including in-hospital cardiac arrest vs out-of-hospital cardiac arrest(OHCA),witnessed vs unwitnessed cardiac arrest,the underlying cause of arrest,the duration,and protocol used for CPR.Although restoring spontaneous circulation is a vital sign,it should not be the end of the game or lone primary outcome;it calls for better understanding and aggressive multi-disciplinary interventions and care.The development of stony heart post-CPR and OHCA remain the main challenges in emergency and critical care medicine.
文摘Objective Endometrial carcinoma(EC)is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates.This underscores the critical need for novel therapeutic targets.One such potential target is cell division cycle 20(CDC20),which has been implicated in oncogenesis.This study investigated the effect of the CDC20 inhibitor Apcin on EC and elucidated the underlying mechanism involved.Methods The effects of Apcin on EC cell proliferation,apoptosis,and the cell cycle were evaluated using CCK8 assays and flow cytometry.RNA sequencing(RNA-seq)was subsequently conducted to explore the underlying molecular mechanism,and Western blotting and coimmunoprecipitation were subsequently performed to validate the results.Animal studies were performed to evaluate the antitumor effects in vivo.Bioinformatics analysis was also conducted to identify CDC20 as a potential therapeutic target in EC.Results Treatment with Apcin inhibited proliferation and induced apoptosis in EC cells,resulting in cell cycle arrest.Pathways associated with apoptosis and the cell cycle were activated following treatment with Apcin.Notably,Apcin treatment led to the upregulation of the cell cycle regulator p21,which was verified to interact with CDC20 and consequently decrease the expression of downstream cyclins in EC cells.In vivo experiments confirmed that Apcin treatment significantly impeded tumor growth.Higher CDC20 expression was observed in EC tissue than in nonmalignant tissue,and increased CDC20 expression in EC patients was associated with shorter overall survival and progress free interval.Conclusion CDC20 is a novel molecular target in EC,and Apcin could be developed as a candidate antitumor drug for EC treatment.
基金funded by the GRRC Program of Gyeonggi province[GRRC-KyungHee2023(B01)],Republic of Korea.
文摘Objective:To examine the inhibitory effect of Hydrangea serrata extract against hepatocellular carcinoma HepG2 cells and its underlying mechanisms.Methods:The effects of Hydrangea serrata extract on growth inhibition of tumor cells and spheroids were assessed using MTT and 3D culture assays.Quantitative real-time PCR and Western blot analyses were employed to investigate the changes in mRNA and protein expression levels of molecules related to cell cycle and apoptosis.Results:Hydrangea serrata extract effectively inhibited the growth of both tumor cells and spheroids.The extract also significantly upregulated p27 mRNA expression and downregulated CDK2 mRNA expression,leading to cell cycle arrest.Moreover,increased BAX/Bcl-2 ratio as well as caspase-9 and-3 were observed after treatment with Hydrangea serrata extract,indicating the induction of tumor cell apoptosis.Conclusions:Hydrangea serrata extract has the potential to alleviate tumors by effectively modulating cell-cycle-related gene expressions and inducing apoptosis,thereby inhibiting tumor growth.
基金supported by National Natural Science Foundation of China General Program (82172179)Mathematics Tianyuan Fund (12126604)Central High-level Hospital Clinical Research Project (2022-PUMCH-B-110)
文摘BACKGROUND:Unsustained return of spontaneous circulation(ROSC)is a critical barrier to survival in cardiac arrest patients.This study examined whether end-tidal carbon dioxide(ETCO_(2))and pulse oximetry photoplethysmogram(POP)parameters can be used to identify unsustained ROSC.METHODS:We conducted a multicenter observational prospective cohort study of consecutive patients with cardiac arrest from 2013 to 2014.Patients’general information,ETCO_(2),and POP parameters were collected and statistically analyzed.RESULTS:The included 105 ROSC episodes(from 80 cardiac arrest patients)comprised 51 sustained ROSC episodes and 54 unsustained ROSC episodes.The 24-hour survival rate was significantly higher in the sustained ROSC group than in the unsustained ROSC group(29.2%vs.9.4%,P<0.05).The logistic regression analysis showed that the difference between after and before ROSC in ETCO_(2)(ΔETCO_(2))and the difference between after and before ROCS in area under the curve of POP(ΔAUCp)were independently associated with sustained ROSC(odds ratio[OR]=0.931,95%confi dence interval[95%CI]0.881-0.984,P=0.011 and OR=0.998,95%CI 0.997-0.999,P<0.001).The area under the receiver operating characteristic curve ofΔETCO_(2),ΔAUCp,and the combination of both to predict unsustained ROSC were 0.752(95%CI 0.660-0.844),0.883(95%CI 0.818-0.948),and 0.902(95%CI 0.842-0.962),respectively.CONCLUSION:Patients with unsustained ROSC have a poor prognosis.The combination ofΔETCO_(2) andΔAUCp showed signifi cant predictive value for unsustained ROSC.
文摘BACKGROUND Simple bone cysts(SBC)are benign tumor-like bone lesions typically identified in children.While SBC may lead to growth disturbances or growth arrest,such cases are uncommon.The mechanisms behind these observations remain unclear.Additionally,research on the etiology of SBC remains inconclusive,and there has been no consensus on the appropriate timing and methodology for treatment.CASE SUMMARY Here,we present our experience in the successful surgical management of a 10-year-old girl with SBC,who presented with a pathological fracture complicated by malunion of the displaced fracture,varus deformity,and limb length discrepancy.We hypothesized two possible etiologies for the patient’s growth arrest and subsequent humerus varus deformity:(1)Direct disruption of the physis by fluid from the cyst itself;and(2)damage to the epiphysis due to repetitive pathological fractures associated with SBC.In addressing this case,surgical intervention was undertaken to correct the proximal humerus varus deformity.This approach offered the advantages of simultaneously correcting angular abnormalities,achieving mild limb lengthening,providing definitive SBC treatment,and reducing the overall treatment duration.CONCLUSION As per current literature,acute correction of acute angular deformity in proximal humeral SBC is not well comprehended.However,in this specific case,acute correction was considered an optimal solution.