To discuss the soil arching effect on the load transferring model and sharing ratios by the piles and inter-pile subsoil in the bidirectionally reinforced composite ground, the forming mechanism, mechanical behavior a...To discuss the soil arching effect on the load transferring model and sharing ratios by the piles and inter-pile subsoil in the bidirectionally reinforced composite ground, the forming mechanism, mechanical behavior and its effect factors were discussed in detail. Then, the unified strength theory was introduced to set up the elastoplastic equilibrium differential equation of the subsoil under the limit equilibrium state. And from the equation, the solutions were derived with the corresponding formulas presented to calculate the earth pressure over and beneath the horizontal reinforced cushion or pillow, the stress of inter-pile subsoil and the pile-soil stress ratio. Based on the obtained solutions and measured data from an engineering project, the influence rules by the soil property parameters (i.e., the cohesion c and internal friction angle φ) and pile spacing on the pile-soil stress ratio n were discussed respectively. The results show that to improve the load sharing ratio by the piles, the more effective means for filling materials with a larger value of φ is to increase the ratio of pile cap size to spacing, while to reduce the pile spacing properly and increase the value of cohesion c is advisable for those filling materials with a smaller value of φ.展开更多
Buckling could be induced when shallow arches were subjected to vertical step loads. In-plane static and dynamic buckling of shallow pin-ended parabolic arches with a horizontal cable was investigated. Based on the eq...Buckling could be induced when shallow arches were subjected to vertical step loads. In-plane static and dynamic buckling of shallow pin-ended parabolic arches with a horizontal cable was investigated. Based on the equations of motion derived from Hamilton's principle, nonlinear equilibrium equations and static buckling equilibrium equations were deduced. Through the pseudo-static analysis, approximate solutions to the lower and upper dynamic buckling loads under step loads were obtained, for shallow parabolic arches. The results show that dynamic buckling and snap-through buckling are impossible when modified slenderness ratio λ<λc and λ>λs, where λc and λs denote critical slenderness ratios of bucking and snap-through buckling, respectively; effects of the stiffness of the horizontal cable on the dynamic buckling are significant; and the dynamic buckling loads under a equivalent central concentrated step load are lower than the loads under a distributed load appreciably.展开更多
The creep-induced deformation of the arch rib of concrete-filled steel tubular (CFST) arches under a sustained load can increase the bending moment, which may lead to earlier stability failure called creep buckling....The creep-induced deformation of the arch rib of concrete-filled steel tubular (CFST) arches under a sustained load can increase the bending moment, which may lead to earlier stability failure called creep buckling. To investigate the influences of concrete creep on the buckling strength of arches, a theoretical analysis for the creep buckling of CFST circular arches under distributed radial load is performed. The simplified Arutyunyan-Maslov (AM) creep law is used to model the creep behavior of concrete core, and the creep integral operator is introduced. The analytical solutions of the time-dependent buckling strength under the sustained load are achieved and compared with the existing formula based on the age-adjusted effective modulus method (AEMM). Then the solutions are used to determine the influences of the steel ratio and the first loading age on the creep buckling of CFST arches. The results show that the analytical solutions are of good accuracy and applicability. For CFST arches, the steel ratio and the first loading age have significant influences on creep buckling. An approximate log-linear relationship between the decreased degrees of the creep buckling strength and the first loading age is found. For the commonly used parameters, the maximum loss of the buckling strength induced bv concrete creen is close to 40%展开更多
Tunnelling has increasingly become an essential tool in the exploration of underground space.A typical construction problem is the face instability during tunnelling,posing a great threat to associated infrastructures...Tunnelling has increasingly become an essential tool in the exploration of underground space.A typical construction problem is the face instability during tunnelling,posing a great threat to associated infrastructures.Tunnel face instability often occurs with the soil arching collapse.This study investigates the combined effect of cutterhead opening ratio and soil non-uniformity on soil arching effect and face stability,via conducting random finite-element analysis coupled with Monte–Carlo simulations.The results underscore that the face stability is strongly associated with the evolution of stress arch.The obtained stability factors in the uniform soils can serve as a reference for the design of support pressure in practical tunnelling engineering.In addition,non-uniform soils exhibit a lower stability factor than uniform soils,which implies that the latter likely yields an underestimated probability of face failure.The tunnel face is found to have a probability of failure more than 50%if the spatial non-uniformity of soil is ignored.In the end,a practical framework is established to determine factor of safety(FOS)corresponding to different levels of probability of face failure considering various opening ratios in non-uniform soils.The required FOS is 1.70 to limit the probability of face instability no more than 0.1%.Our findings can facilitate the prediction of probability of instability in the conventionally deterministic design of face pressure.展开更多
基金Project (07JJ4015) supported by the Natural Science Foundation of Hunan Province, China
文摘To discuss the soil arching effect on the load transferring model and sharing ratios by the piles and inter-pile subsoil in the bidirectionally reinforced composite ground, the forming mechanism, mechanical behavior and its effect factors were discussed in detail. Then, the unified strength theory was introduced to set up the elastoplastic equilibrium differential equation of the subsoil under the limit equilibrium state. And from the equation, the solutions were derived with the corresponding formulas presented to calculate the earth pressure over and beneath the horizontal reinforced cushion or pillow, the stress of inter-pile subsoil and the pile-soil stress ratio. Based on the obtained solutions and measured data from an engineering project, the influence rules by the soil property parameters (i.e., the cohesion c and internal friction angle φ) and pile spacing on the pile-soil stress ratio n were discussed respectively. The results show that to improve the load sharing ratio by the piles, the more effective means for filling materials with a larger value of φ is to increase the ratio of pile cap size to spacing, while to reduce the pile spacing properly and increase the value of cohesion c is advisable for those filling materials with a smaller value of φ.
基金Project (50478075) supported by the National Natural Science Foundation of China
文摘Buckling could be induced when shallow arches were subjected to vertical step loads. In-plane static and dynamic buckling of shallow pin-ended parabolic arches with a horizontal cable was investigated. Based on the equations of motion derived from Hamilton's principle, nonlinear equilibrium equations and static buckling equilibrium equations were deduced. Through the pseudo-static analysis, approximate solutions to the lower and upper dynamic buckling loads under step loads were obtained, for shallow parabolic arches. The results show that dynamic buckling and snap-through buckling are impossible when modified slenderness ratio λ<λc and λ>λs, where λc and λs denote critical slenderness ratios of bucking and snap-through buckling, respectively; effects of the stiffness of the horizontal cable on the dynamic buckling are significant; and the dynamic buckling loads under a equivalent central concentrated step load are lower than the loads under a distributed load appreciably.
基金Supported by the National Natural Science Foundation of China(No.51378162,No.51178150)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No2013BAJ08B01)
文摘The creep-induced deformation of the arch rib of concrete-filled steel tubular (CFST) arches under a sustained load can increase the bending moment, which may lead to earlier stability failure called creep buckling. To investigate the influences of concrete creep on the buckling strength of arches, a theoretical analysis for the creep buckling of CFST circular arches under distributed radial load is performed. The simplified Arutyunyan-Maslov (AM) creep law is used to model the creep behavior of concrete core, and the creep integral operator is introduced. The analytical solutions of the time-dependent buckling strength under the sustained load are achieved and compared with the existing formula based on the age-adjusted effective modulus method (AEMM). Then the solutions are used to determine the influences of the steel ratio and the first loading age on the creep buckling of CFST arches. The results show that the analytical solutions are of good accuracy and applicability. For CFST arches, the steel ratio and the first loading age have significant influences on creep buckling. An approximate log-linear relationship between the decreased degrees of the creep buckling strength and the first loading age is found. For the commonly used parameters, the maximum loss of the buckling strength induced bv concrete creen is close to 40%
基金supported by the Natural Science Foundation Innovation Group Project of Hubei Province,China(Grant No.2023AFA017)the NRF-NSFC 3rd Joint Research Grant(Earth Science)(Grant No.41861144022).
文摘Tunnelling has increasingly become an essential tool in the exploration of underground space.A typical construction problem is the face instability during tunnelling,posing a great threat to associated infrastructures.Tunnel face instability often occurs with the soil arching collapse.This study investigates the combined effect of cutterhead opening ratio and soil non-uniformity on soil arching effect and face stability,via conducting random finite-element analysis coupled with Monte–Carlo simulations.The results underscore that the face stability is strongly associated with the evolution of stress arch.The obtained stability factors in the uniform soils can serve as a reference for the design of support pressure in practical tunnelling engineering.In addition,non-uniform soils exhibit a lower stability factor than uniform soils,which implies that the latter likely yields an underestimated probability of face failure.The tunnel face is found to have a probability of failure more than 50%if the spatial non-uniformity of soil is ignored.In the end,a practical framework is established to determine factor of safety(FOS)corresponding to different levels of probability of face failure considering various opening ratios in non-uniform soils.The required FOS is 1.70 to limit the probability of face instability no more than 0.1%.Our findings can facilitate the prediction of probability of instability in the conventionally deterministic design of face pressure.