The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its...The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its elevated calcium sulfate content,ABR exhibits considerable promise for industrial applications.This study delved into the feasibility of utilizing ABR as a source of sulfates for producing super sulfated cement(SSC),offering an innovative binder for cemented paste backfill(CPB).Thermal treatment at varying temperatures of 150,350,600,and 800℃ was employed to modify ABR’s performance.The investigation encompassed the examination of phase transformations and alterations in the chemical composition of As within ABR.Subsequently,the hydration characteristics of SSC utilizing ABR,with or without thermal treatment,were studied,encompassing reaction kinetics,setting time,strength development,and microstructure.The findings revealed that thermal treatment changed the calcium sulfate structure in ABR,consequently impacting the resultant sample performance.Notably,calcination at 600℃ demonstrated optimal modification effects on both early and long-term strength attributes.This enhanced performance can be attributed to the augmented formation of reaction products and a densified micro-structure.Furthermore,the thermal treatment elicited modifications in the chemical As fractions within ABR,with limited impact on the As immobilization capacity of the prepared binders.展开更多
This study aims to reveal the occurrence and origin of typical groundwater with high arsenic and fluoride concentrations in the loess area of the Guanzhong Basin—a Neogene faulted basin.Key findings are as follows:(1...This study aims to reveal the occurrence and origin of typical groundwater with high arsenic and fluoride concentrations in the loess area of the Guanzhong Basin—a Neogene faulted basin.Key findings are as follows:(1)Groundwater samples with high arsenic and fluoride concentrations collected from the loess area and the terraces of the Weihe River accounted for 26%and 30%,respectively,of the total samples,with primary hydrochemical type identified as HCO_(3)-Na.The karst and sand areas exhibit relatively high groundwater quality,serving as preferred sources for water supply.It is recommended that local governments fully harness groundwater in these areas;(2)groundwater with high arsenic and fluoride concentrations in the loess area and the alluvial plain of rivers in Dali County is primarily distributed within the Guanzhong Basin,which represents the drainage zone of groundwater;(3)arsenic and fluoride in groundwater originate principally from natural and anthropogenic sources;(4)the human health risk assessments reveal that long-term intake of groundwater with high arsenic and fluoride concentrations pose cancer or non-cancer risks,which are more serious to kids compared to adults.This study provides a theoretical basis for the prevention and treatment of groundwater with high arsenic and fluoride concentrations in loess areas.展开更多
This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition...This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency.展开更多
Lagoons are ecosystems for biodiversity and the livelihoods of coastal communities. The main objective of the study was to analyze the variability of arsenic concentrations in gastropods and bivalves in the Aby and Te...Lagoons are ecosystems for biodiversity and the livelihoods of coastal communities. The main objective of the study was to analyze the variability of arsenic concentrations in gastropods and bivalves in the Aby and Tendo lagoons, taking into account spatial, seasonal and hydrological variations. The study was carried out in four stages spread over two successive hydroclimatic cycles, including two seasons during the rainy season and two more during the dry season. The samples were taken in two areas of the Aby and Tendo lagoons. Arsenic levels were measured by ICP-MS. The results showed that mean arsenic concentrations in the muscles of organisms in Aby Lagoon ranged from 0.01 to 1.26 μg As/g, with a mean and median of 0.17 and 0.06 μg As/g, respectively. Fish had the highest levels of arsenic, followed by crustaceans, while molluscs and plants had lower and comparable concentrations of As. Arsenic concentrations in tilapia and jawbones varied significantly between sites and seasons, with higher concentrations at Tendo and during the rainy season. Arsenic concentrations in gastropods and bivalves were significantly higher than those of other species, with averages of 0.74 and 1.03 mg As/kg, respectively.展开更多
Roles of Marigold extracts (ME) on arsenic trioxide (ATO)-induced oxidative damage to pancreatic β-cells need to be further elucidated. In this study, NIT-1 cells were treated with different concentrations of and/or ...Roles of Marigold extracts (ME) on arsenic trioxide (ATO)-induced oxidative damage to pancreatic β-cells need to be further elucidated. In this study, NIT-1 cells were treated with different concentrations of and/or ATO, following by the cell viability was detected by CCK8 assay. Then, intracellular reactive oxygen species (ROS) levels, lipid peroxide (MDA) contents and superoxide dismutase (SOD) activity were measured with a fluorescence probe method and colorimetric assay, respectively. The apoptosis rate and morphology was detected and observed with hoechst 33,258 staining assay. The mRNA levels and protein expressions of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were measured by real-time fluorescence quantitative polymerase chain reaction and protein immunoblotting assay, respectively. Our results indicated that Co-treatment with ME and ATO exacerbated the cell viability decreasing reduced by ATO, while the addition of ME after ATO treatment effectively promote the recovery of ATO reduced survival rates. The ATO group increased apoptosis (P P β-cells by modulating the activation of the Nrf2 signaling pathway.展开更多
The legacy of the human misery caused by the application of the herbicides including Agent Purple and Agent Orange contaminated with unknown amounts of dioxin TCDD and Agent Blue, the arsenic-based herbicide, sprayed ...The legacy of the human misery caused by the application of the herbicides including Agent Purple and Agent Orange contaminated with unknown amounts of dioxin TCDD and Agent Blue, the arsenic-based herbicide, sprayed over the jungles, rice fields, and hamlets of Vietnam is still haunting us today. Why did this happen? Could it have been prevented? Was it necessary United States military strategy? Was it an intentional decision to inflict this blight on the enemy soldiers and the Vietnamese, Cambodian, and Laotian civilians, to poison their land and cause generations of harm? Alternatively, was it an unpreventable accident in the march of military history? What patterns in the U.S. government’s thought process could be identified as the cause, which led to the decision to use these herbicides as tactical chemical weapons? If the introduction of herbicide (chemical) weapons had not been made, would the outcome of the Vietnam War and the Secret Wars in Laos and Cambodia have been any different? The objective of this treatise is to outline the role of world events and backgrounds and the role of the leaders, U.S. military, CIA, USDA, U.S. State Department, the U.S. President appointed Ambassadors to Vietnam and Laos, chemical companies, and President Diệm’s Republic of Vietnam (RVN) government and military. Their collective advice led to the decision to use herbicides as military and environmental chemical weapons in the Second Indochina War. Were the National interests achieved by U.S. military strategy in the RVN using herbicide weapons worth the long-term environmental and human health consequences in Vietnam, Cambodia, and Laos? Did it impact the outcome of the Second Indochina War?展开更多
A process was proposed for removing and stabilizing arsenic(As) from anode slime. The anode slime with high arsenic concentration was pretreated by circular alkaline leaching process. Then, the arsenic in the leaching...A process was proposed for removing and stabilizing arsenic(As) from anode slime. The anode slime with high arsenic concentration was pretreated by circular alkaline leaching process. Then, the arsenic in the leaching solution can be further precipitated as a form of scorodite crystalline(FeAsO4·2H2O). In the precipitating arsenic reaction, in which ferrous ions were oxidized by air gas, the effects of acidity(p H), reaction temperature, air flow rate, initial concentration of arsenic and initial molar ratio of Fe(II) to As(V) on arsenic precipitation were investigated. The results showed that sufficiently stable crystal scorodite could be achieved under the condition of initial arsenic concentration of 10 g/L, pH 3.0-4.0, Fe/As molar ratio of 1.5, the temperature of 80-95 °C, and the air flow rate higher than 120 L/h. Under the optimal condition, more than 78% of arsenic could be precipitated as a form of scorodite crystalline. The As leaching concentration of the precipitates was less than 2.0 mg/L and the precipitates may be considered to be safe for disposal.展开更多
Arsenic is selectively extracted from high-arsenic dust by NaOH-Na2S alkaline leaching process. In the leaching arsenic process, the effects of alkali-to-dust ratio, sodium sulfide addition, leaching temperature, leac...Arsenic is selectively extracted from high-arsenic dust by NaOH-Na2S alkaline leaching process. In the leaching arsenic process, the effects of alkali-to-dust ratio, sodium sulfide addition, leaching temperature, leaching time and liquid-to-solid ratio on metals leaching efficiencies were investigated. The results show that the arsenic can be effectively separated from other metals under the optimum conditions of alkali/dust mass ratio of 0.5, sodium sulfide addition of 0.25 g/g, leaching temperature of 90 ℃, leaching time of 2 h, and liquid-to-solid ratio of 5:1 (mL/g). Under these conditions, the average leaching efficiencies of arsenic, antimony, lead, tin and zinc are 92.75%, 11.68%, 0.31%, 29.75% and 36.85%, respectively. The NaOH-Na2S alkaline leaching process provides a simple and highly efficient way to remove arsenic from high-arsenic dust, leaving residue as a suitable lead resource.展开更多
The arsenic extraction from the arsenic-containing cobalt and nickel slag,which came from the purification process of zinc sulfate solution in a zinc smelting factory,was investigated.The alkaline leaching method was ...The arsenic extraction from the arsenic-containing cobalt and nickel slag,which came from the purification process of zinc sulfate solution in a zinc smelting factory,was investigated.The alkaline leaching method was proposed according to the mode of occurrence of arsenic in the slag and its amphoteric characteristic.The leaching experiments were conducted in the alkaline aqueous medium,with bubbling of oxygen into the solution,and the optimal conditions for leaching arsenic were determined.The results showed that the extraction rate of arsenic was maximized at 99.10%under the optimal conditions of temperature 140 ℃,NaOH concentration 150 g/L,oxygen partial pressure 0.5 MPa,and a liquid-to-solid ratio 5:1.Based on the solubilities of As2O5,ZnO and PbO in NaOH solution at 25 ℃,a method for the separation of As in the form of sodium arsenate salt from the arsenic-rich leachate via cooling crystallization was established,and the reaction medium could be fully recycled.The crystallization rate was confirmed to reach 88.9%(calculated on the basis of Na3AsO4) upon a direct cooling of the hot leachate down to room temperature.On the basis of redox potentials,the sodium arsenate solution could be further reduced by sulfur dioxide(SO2) gas to arsenite,at a reduction yield of 92%under the suitable conditions.Arsenic trioxide with regular octahedron shape could be prepared successfully from the reduced solution,and further recycled to the purification process to purify the zinc sulfate solution.Also,sodium arsenite solution obtained after the reduction of arsenate could be directly used to purify the zinc sulfate solution.Therefore,the technical scheme of alkaline leaching with pressured oxygen,cooling crystallization,arsenate reduction by SO2 gas,and arsenic trioxide preparation,provides an attractive approach to realize the resource utilization of arsenic-containing cobalt and nickel slag.展开更多
The species of arsenic in secondary zinc oxide generated from fuming furnace were investigated. The results revealed that there are mainly three types of secondary zinc oxide based on three arsenic species. The main p...The species of arsenic in secondary zinc oxide generated from fuming furnace were investigated. The results revealed that there are mainly three types of secondary zinc oxide based on three arsenic species. The main phase of As is As2O3 in type Ⅰ, zinc arsenite (Zn(AsO2)2) in type Ⅱ and lead arsenate (Pb(As206), Pb4As2O9) in type Ⅲ, respectively. Selective leaching of zinc oxide of type Ⅱ was carried out. The leaching rate of As kept at 65%-70% with 30 g/L NaOH and L/S ratio of 3 at 20 ℃ for 1 h, while the losses of Pb and Zn were both below 1%.展开更多
Cu, As, Sb and Bi in copper electrolyte could be efficiently removed by reducing with SO2 followed by evaporative crystallization. As2O3 and CuSO4·5H2O were obtained after crystallized product was treated by diss...Cu, As, Sb and Bi in copper electrolyte could be efficiently removed by reducing with SO2 followed by evaporative crystallization. As2O3 and CuSO4·5H2O were obtained after crystallized product was treated by dissolution, oxidation, neutralization, sedimentation, filtration and evaporative crystallization. The removal rates of Cu, As, Sb and Bi are 87.1%, 83.9%, 21.0% and 84.7%, respectively, when As (Ⅴ) in copper electrolyte is fully reduced to As (Ⅲ) by SO2, and the H2SO4 in concentrated copper electrolyte is 645 g/L. The removal rate of As is 92.81% when 65 g crystallized product is dissolved in 200 mL water at 30 ℃. The CuSO4·5H2O content is 98.8% when the filtrate is purified under the conditions that n(Fe):n(As) is 1.2, the dosage of H2O2 is 19 times the stoichiometric needed, temperature is 45 ℃, time is 40 min, pH is 3.7, and then is evaporation crystallized.展开更多
Cu and As were separated and recovered from copper electrolyte by multiple stage electrowinning, reduction with SO2and evaporative crystallization. Experimental results showed that when the current density was 200 A/m...Cu and As were separated and recovered from copper electrolyte by multiple stage electrowinning, reduction with SO2and evaporative crystallization. Experimental results showed that when the current density was 200 A/m2, the electrolyte temperature was 55 °C, the electrolyte circulation rate was about 10 mL/min and the final Cu concentration was higher than 25.88 g/L, the pure copper cathode was recovered. By adjusting the current density to 100 A/m2 and the electrolyte temperature to 65 °C, the removal rate of As was 18.25% when the Cu concentration decreased from 24.69 g/L to 0.42 g/L. After As(V) in Cu-depleted electrolyte was fully reduced to As(Ⅲ) by SO2, the resultant solution was subjected to evaporative crystallization, then As2O3 was produced, and the recovery rate of As was 59.76%. The cathodic polarization curves demonstrated that both Cu2+ concentration and As(V) affect the limiting current of Cu2+ deposition.展开更多
The influences of temperature, H2SO4 concentration, CuSO4 concentration, reaction time and SO2 flow rate on the reduction of arsenic(V) with SO2 were studied and the deposition behavior of arsenic (III) under the ...The influences of temperature, H2SO4 concentration, CuSO4 concentration, reaction time and SO2 flow rate on the reduction of arsenic(V) with SO2 were studied and the deposition behavior of arsenic (III) under the effect of concentration and co-crystallization was investigated in copper electrolyte. The results indicate that reduction rate of arsenic (V) decreases with increasing temperature and H2SO4 concentration, but increases with increasing SO2 flow rate and reaction time, and it can reach 92% under appropriate conditions that reaction temperature is 65 °C, H2SO4 concentration is 203 g/L, CuSO4 concentration is 80 g/L, reaction time is 2 h and SO2 gas flow rate is 200 mL/min. To remove arsenic in the copper electrolyte, arsenic (V) is reduced to trivalence under the appropriate conditions, the copper electrolyte is concentrated till H2SO4 concentration reaches 645 g/L, and then the removal rates of As, Cu, Sb and Bi reach 83.9%, 87.1%, 21.0% and 84.7%. The XRD analysis shows that crystallized product obtained contains As2O3 and CuSO4·5H2O.展开更多
[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by c...[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by combined atomic fluorescence spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-80.0μg/L of As and 0-8.0 μg/L of Hg, and the detection limits of As and Hg was 0.036 μg/L and 0.015 μg/L, respectively. The precision for elevenfold determination of As at 40.0 ug/L level and Hg at 4.0μg/L level were 1.1% and 2.2%(RSD), respectively. Recoveries of 103.0%-106.6% for As and 90.0%-95.0% for Hg were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of As and Hg in soil samples.展开更多
This paper studies the preparation method of As_2O_3 nanoparticles and theirantitumor effect on human liver cancer cells. As_2O_3 nanoparticles were prepared by sol-gel method.As_2O_3 nanoparticles were characterized ...This paper studies the preparation method of As_2O_3 nanoparticles and theirantitumor effect on human liver cancer cells. As_2O_3 nanoparticles were prepared by sol-gel method.As_2O_3 nanoparticles were characterized by transmission electron microscope ( TEM), energydispersive spectrometer ( EDS) and computer color magic image analysis system (CMIAS). A methylthiazolyl tetrazolium (MTT) assay and a flow cytometry (FCM) assay were performed to examine theantitumor effect of As_2O_3 nanoparticlesat various concentrations(1, 2, 5, 10 mumol/L). We alsocompared the antitumor effect of As_2O_3 nanoparticles with that of As_2O_3 solution. The averagediameters of two kinds of As_2O_3 nanoparticles prepared were about 80 nm and 40 nm. It wasidentified that the prepared nanoparticles were As_2O_3 and there were no other components by EDS.After 48 h of treatment with As_2O_3 nanoparticles, the survival ratio of cells was significantlylower than that of the As2O3 solution with the same concentration(P < 0. 05). Experimental resultsdemonstrate that by sol-gel method As_2O_3 can be prepared into nanoparticles. As_2O_3 nanoparticlescan produce a better cytotoxic effect on tumor cells than the As_2O_3 solution.展开更多
High pure tellurium was prepared from raw tellurium containing copper and selenium by chemical method containing oxidation with concentrated nitric acid, leaching with hydrochloric acid, reducing with sulfur dioxide a...High pure tellurium was prepared from raw tellurium containing copper and selenium by chemical method containing oxidation with concentrated nitric acid, leaching with hydrochloric acid, reducing with sulfur dioxide and treating in hydrogen atmosphere at high temperature. Removal ratio of Cu in raw tellurium reaches 99% after raw tellurium is oxidized and leached with HNO3(69%) under the following conditions: 0.96 times stoichiometric quantity of concentrated nitric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Leaching ratio of Te reaches 99% after Te is leached with hydrochloric acid under the following conditions: 1.67 times stoichiometric quantity of hydrochloric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Tellurium powder(99.95%) is obtained when Te(IV) in leachate is reduced with sulfur dioxide. The purity of tellurium increases from 99.954% to 99.999 6% after tellurium(99.95%) is treated in hydrogen atmosphere at 723.15 K for 30 min.展开更多
Inductively coupled plasma mass spectrometry (ICP-MS) was applied to determine copper, arsenic, cadmium, lead in athletic food using Sc, Ge, In, Bi as an internal standard. The linear correlation factor for four eleme...Inductively coupled plasma mass spectrometry (ICP-MS) was applied to determine copper, arsenic, cadmium, lead in athletic food using Sc, Ge, In, Bi as an internal standard. The linear correlation factor for four elements are higher than 0.999. Recoveries of spiked samples are in the range of 85.5%-115.5% and precision was fine, RSD is lower than 5.0%. And these are close agreement with the reference values in three standard reference materials of GBW08503, NBS1568, GBW08571. It indicates that the method is simple, rapid, sensitive and accurate, which can meet the demand for copper, arsenic, cadmium, lead analysis in athletic food.展开更多
The effects of different arsenic (As) treatments on spatial pattern of radial oxygen loss (ROL), iron (Fe) plaque formation and As accumulation in rice were investigated using three rice genotypes, planted under...The effects of different arsenic (As) treatments on spatial pattern of radial oxygen loss (ROL), iron (Fe) plaque formation and As accumulation in rice were investigated using three rice genotypes, planted under greenhouse conditions. Arsenic was applied to soil at 50 and 100 mg/kg, with untreated soil used as a control having an average As concentration of 8.5 mg/kg. It was demonstrated that the ratio of ROL in root tips to that at the root base slightly decreased with increasing As concentration, suggesting that the spatial ROL patterns in these groups may be shifted from the “tight” barrier towards the “partial” barrier form. Furthermore, increasing As concentration led to a increase in Fe plaque formation on root surfaces. In addition, root As concentrations of genotypes in 50 and 100 mg/kg As treatments were significantly higher than that of control treatment (P〈0.05). Grain As concentration of genotype Nanyangzhan (with lower ROL) was significantly higher (P〈0.05) than that of genotype CNT87059-3 with higher ROL.展开更多
The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observa...The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observations of 9 cruises carried out in 2000 - 2003. The study area covers a broad range of hydrographic and chemical properties. The emphasis is put on a southeast transect from Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the East China Sea to discuss the impact of terrestdal input on the marginal seas of China. Arsenic species (TDlAs and arsenite) are determined by selective hydride generation - atomic fluorescence spectrometry (HG-AFS). TDIAs concentrations were high in the coastal area of Changjiang Estuary and decreased slightly towards the shelf region. High concentratiOns of TDIAs were also existed in the near bottom layer of shelf edge of the East China Sea which indicated another source of arsenic from the incursion of Kuroshio Waters. The seasonal variations of TDIAs in the study area depend on the hydrographic stages of Changjiang and the incursion intensity of Kuroshio Waters. Arsenite showed opposite distributions with TDIAs, with higher concentrations appeared at the surface layer of shelf region, which was positive correlated with the chlorophyll a. Biological conversion of arsenate into arsenite was hypothesized for the observed distribution pattern and its seasonal variations. The stoichoimetric ratios of As to P were estimated to be about 2×10^3 at PN Section in summer. The concentrations of dissolved arsenic in the Yellow Sea and East China Sea were comparable with other areas in the world.展开更多
Objective: To explore the relationship between survivin and drug resistance, and the changes of the survivin expression in HL-60 cells treated with three kinds of chemotherapeutic drugs. Methods: HL- 60 cells were t...Objective: To explore the relationship between survivin and drug resistance, and the changes of the survivin expression in HL-60 cells treated with three kinds of chemotherapeutic drugs. Methods: HL- 60 cells were treated with appropriate concentration of daunomycin (DNR), mitoxantrone (MIT) or arsenic trioxide (As2O3). The expression of survivin mRNA and protein on the first or third day was detected by RT-PCR and Western blot respectively. Results: The expression of survivin mRNA was decreased on the first day by 10% in DNR-treated group, 40% in MIT-treated group (P〈0.01) and 25% in As2O3-treated group (P〈0.01) respectively. On the third day, the expression of survivin mRNA in DNR- and MIT-treated group was up-regulated to 120% (P〈0.05) and 165% (P〈0.01) respectively as compared with that on the first day, but down-regulated to 68% in As2O3-treated group (P〈0.01). As compared with control group, the expression of survivin protein in DNR- or MIT-treated group was increased by 14% or 11% on the third day respectively, but it was decreased by 18% in As2O3-treated group. Conclusion: In DNR- and MIT-treated group, the expression of surivin was decreased at first and then increased obviously, which may be one of the causes for resistance to chemotherapy against leukemia. Different from other two drugs, As2O3 may play an important role in restoring chemotherapy sensitivity.展开更多
基金supported from the National Natural Science Foundation of China(No.52304148)the Youth Project of Shanxi Basic Research Program,China(No.202203021212262).
文摘The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its elevated calcium sulfate content,ABR exhibits considerable promise for industrial applications.This study delved into the feasibility of utilizing ABR as a source of sulfates for producing super sulfated cement(SSC),offering an innovative binder for cemented paste backfill(CPB).Thermal treatment at varying temperatures of 150,350,600,and 800℃ was employed to modify ABR’s performance.The investigation encompassed the examination of phase transformations and alterations in the chemical composition of As within ABR.Subsequently,the hydration characteristics of SSC utilizing ABR,with or without thermal treatment,were studied,encompassing reaction kinetics,setting time,strength development,and microstructure.The findings revealed that thermal treatment changed the calcium sulfate structure in ABR,consequently impacting the resultant sample performance.Notably,calcination at 600℃ demonstrated optimal modification effects on both early and long-term strength attributes.This enhanced performance can be attributed to the augmented formation of reaction products and a densified micro-structure.Furthermore,the thermal treatment elicited modifications in the chemical As fractions within ABR,with limited impact on the As immobilization capacity of the prepared binders.
基金funded by the ministry-province cooperation-based pilot project entitled A Technological System for Ecological Remediation Evaluation of Open-Pit Mines initiated by the Ministry of Natural Resources in 2023(2023-03)survey projects of the Land and Resources Investigation Program([2023]06-03-04,1212010634713)a key R&D projects of Shaanxi Province in 2023(2023ZDLSF-63)。
文摘This study aims to reveal the occurrence and origin of typical groundwater with high arsenic and fluoride concentrations in the loess area of the Guanzhong Basin—a Neogene faulted basin.Key findings are as follows:(1)Groundwater samples with high arsenic and fluoride concentrations collected from the loess area and the terraces of the Weihe River accounted for 26%and 30%,respectively,of the total samples,with primary hydrochemical type identified as HCO_(3)-Na.The karst and sand areas exhibit relatively high groundwater quality,serving as preferred sources for water supply.It is recommended that local governments fully harness groundwater in these areas;(2)groundwater with high arsenic and fluoride concentrations in the loess area and the alluvial plain of rivers in Dali County is primarily distributed within the Guanzhong Basin,which represents the drainage zone of groundwater;(3)arsenic and fluoride in groundwater originate principally from natural and anthropogenic sources;(4)the human health risk assessments reveal that long-term intake of groundwater with high arsenic and fluoride concentrations pose cancer or non-cancer risks,which are more serious to kids compared to adults.This study provides a theoretical basis for the prevention and treatment of groundwater with high arsenic and fluoride concentrations in loess areas.
文摘This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency.
文摘Lagoons are ecosystems for biodiversity and the livelihoods of coastal communities. The main objective of the study was to analyze the variability of arsenic concentrations in gastropods and bivalves in the Aby and Tendo lagoons, taking into account spatial, seasonal and hydrological variations. The study was carried out in four stages spread over two successive hydroclimatic cycles, including two seasons during the rainy season and two more during the dry season. The samples were taken in two areas of the Aby and Tendo lagoons. Arsenic levels were measured by ICP-MS. The results showed that mean arsenic concentrations in the muscles of organisms in Aby Lagoon ranged from 0.01 to 1.26 μg As/g, with a mean and median of 0.17 and 0.06 μg As/g, respectively. Fish had the highest levels of arsenic, followed by crustaceans, while molluscs and plants had lower and comparable concentrations of As. Arsenic concentrations in tilapia and jawbones varied significantly between sites and seasons, with higher concentrations at Tendo and during the rainy season. Arsenic concentrations in gastropods and bivalves were significantly higher than those of other species, with averages of 0.74 and 1.03 mg As/kg, respectively.
文摘Roles of Marigold extracts (ME) on arsenic trioxide (ATO)-induced oxidative damage to pancreatic β-cells need to be further elucidated. In this study, NIT-1 cells were treated with different concentrations of and/or ATO, following by the cell viability was detected by CCK8 assay. Then, intracellular reactive oxygen species (ROS) levels, lipid peroxide (MDA) contents and superoxide dismutase (SOD) activity were measured with a fluorescence probe method and colorimetric assay, respectively. The apoptosis rate and morphology was detected and observed with hoechst 33,258 staining assay. The mRNA levels and protein expressions of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were measured by real-time fluorescence quantitative polymerase chain reaction and protein immunoblotting assay, respectively. Our results indicated that Co-treatment with ME and ATO exacerbated the cell viability decreasing reduced by ATO, while the addition of ME after ATO treatment effectively promote the recovery of ATO reduced survival rates. The ATO group increased apoptosis (P P β-cells by modulating the activation of the Nrf2 signaling pathway.
文摘The legacy of the human misery caused by the application of the herbicides including Agent Purple and Agent Orange contaminated with unknown amounts of dioxin TCDD and Agent Blue, the arsenic-based herbicide, sprayed over the jungles, rice fields, and hamlets of Vietnam is still haunting us today. Why did this happen? Could it have been prevented? Was it necessary United States military strategy? Was it an intentional decision to inflict this blight on the enemy soldiers and the Vietnamese, Cambodian, and Laotian civilians, to poison their land and cause generations of harm? Alternatively, was it an unpreventable accident in the march of military history? What patterns in the U.S. government’s thought process could be identified as the cause, which led to the decision to use these herbicides as tactical chemical weapons? If the introduction of herbicide (chemical) weapons had not been made, would the outcome of the Vietnam War and the Secret Wars in Laos and Cambodia have been any different? The objective of this treatise is to outline the role of world events and backgrounds and the role of the leaders, U.S. military, CIA, USDA, U.S. State Department, the U.S. President appointed Ambassadors to Vietnam and Laos, chemical companies, and President Diệm’s Republic of Vietnam (RVN) government and military. Their collective advice led to the decision to use herbicides as military and environmental chemical weapons in the Second Indochina War. Were the National interests achieved by U.S. military strategy in the RVN using herbicide weapons worth the long-term environmental and human health consequences in Vietnam, Cambodia, and Laos? Did it impact the outcome of the Second Indochina War?
基金Projects(51304251,51374237)supported by the National Natural Science Foundation of ChinaProject(201509050)supported by Special Program on Environmental Protection for Public Welfare,ChinaProjects(2012FJ1010,2014FJ1011)supported by the Key Projects of Science and Technology of Hunan Province,China
文摘A process was proposed for removing and stabilizing arsenic(As) from anode slime. The anode slime with high arsenic concentration was pretreated by circular alkaline leaching process. Then, the arsenic in the leaching solution can be further precipitated as a form of scorodite crystalline(FeAsO4·2H2O). In the precipitating arsenic reaction, in which ferrous ions were oxidized by air gas, the effects of acidity(p H), reaction temperature, air flow rate, initial concentration of arsenic and initial molar ratio of Fe(II) to As(V) on arsenic precipitation were investigated. The results showed that sufficiently stable crystal scorodite could be achieved under the condition of initial arsenic concentration of 10 g/L, pH 3.0-4.0, Fe/As molar ratio of 1.5, the temperature of 80-95 °C, and the air flow rate higher than 120 L/h. Under the optimal condition, more than 78% of arsenic could be precipitated as a form of scorodite crystalline. The As leaching concentration of the precipitates was less than 2.0 mg/L and the precipitates may be considered to be safe for disposal.
基金Project(2012AA04022)supported by the Scientific Research and Technology Development Project of Guangxi,China
文摘Arsenic is selectively extracted from high-arsenic dust by NaOH-Na2S alkaline leaching process. In the leaching arsenic process, the effects of alkali-to-dust ratio, sodium sulfide addition, leaching temperature, leaching time and liquid-to-solid ratio on metals leaching efficiencies were investigated. The results show that the arsenic can be effectively separated from other metals under the optimum conditions of alkali/dust mass ratio of 0.5, sodium sulfide addition of 0.25 g/g, leaching temperature of 90 ℃, leaching time of 2 h, and liquid-to-solid ratio of 5:1 (mL/g). Under these conditions, the average leaching efficiencies of arsenic, antimony, lead, tin and zinc are 92.75%, 11.68%, 0.31%, 29.75% and 36.85%, respectively. The NaOH-Na2S alkaline leaching process provides a simple and highly efficient way to remove arsenic from high-arsenic dust, leaving residue as a suitable lead resource.
基金Project (2012BAC12B01) supported by the National Key Technologies R&D Program of ChinaProject (2012FJ1010) supported by Science and Technology Major Project of Hunan Province,China
文摘The arsenic extraction from the arsenic-containing cobalt and nickel slag,which came from the purification process of zinc sulfate solution in a zinc smelting factory,was investigated.The alkaline leaching method was proposed according to the mode of occurrence of arsenic in the slag and its amphoteric characteristic.The leaching experiments were conducted in the alkaline aqueous medium,with bubbling of oxygen into the solution,and the optimal conditions for leaching arsenic were determined.The results showed that the extraction rate of arsenic was maximized at 99.10%under the optimal conditions of temperature 140 ℃,NaOH concentration 150 g/L,oxygen partial pressure 0.5 MPa,and a liquid-to-solid ratio 5:1.Based on the solubilities of As2O5,ZnO and PbO in NaOH solution at 25 ℃,a method for the separation of As in the form of sodium arsenate salt from the arsenic-rich leachate via cooling crystallization was established,and the reaction medium could be fully recycled.The crystallization rate was confirmed to reach 88.9%(calculated on the basis of Na3AsO4) upon a direct cooling of the hot leachate down to room temperature.On the basis of redox potentials,the sodium arsenate solution could be further reduced by sulfur dioxide(SO2) gas to arsenite,at a reduction yield of 92%under the suitable conditions.Arsenic trioxide with regular octahedron shape could be prepared successfully from the reduced solution,and further recycled to the purification process to purify the zinc sulfate solution.Also,sodium arsenite solution obtained after the reduction of arsenate could be directly used to purify the zinc sulfate solution.Therefore,the technical scheme of alkaline leaching with pressured oxygen,cooling crystallization,arsenate reduction by SO2 gas,and arsenic trioxide preparation,provides an attractive approach to realize the resource utilization of arsenic-containing cobalt and nickel slag.
基金Project (50874121) supported by the National Natural Science Foundation of China
文摘The species of arsenic in secondary zinc oxide generated from fuming furnace were investigated. The results revealed that there are mainly three types of secondary zinc oxide based on three arsenic species. The main phase of As is As2O3 in type Ⅰ, zinc arsenite (Zn(AsO2)2) in type Ⅱ and lead arsenate (Pb(As206), Pb4As2O9) in type Ⅲ, respectively. Selective leaching of zinc oxide of type Ⅱ was carried out. The leaching rate of As kept at 65%-70% with 30 g/L NaOH and L/S ratio of 3 at 20 ℃ for 1 h, while the losses of Pb and Zn were both below 1%.
文摘Cu, As, Sb and Bi in copper electrolyte could be efficiently removed by reducing with SO2 followed by evaporative crystallization. As2O3 and CuSO4·5H2O were obtained after crystallized product was treated by dissolution, oxidation, neutralization, sedimentation, filtration and evaporative crystallization. The removal rates of Cu, As, Sb and Bi are 87.1%, 83.9%, 21.0% and 84.7%, respectively, when As (Ⅴ) in copper electrolyte is fully reduced to As (Ⅲ) by SO2, and the H2SO4 in concentrated copper electrolyte is 645 g/L. The removal rate of As is 92.81% when 65 g crystallized product is dissolved in 200 mL water at 30 ℃. The CuSO4·5H2O content is 98.8% when the filtrate is purified under the conditions that n(Fe):n(As) is 1.2, the dosage of H2O2 is 19 times the stoichiometric needed, temperature is 45 ℃, time is 40 min, pH is 3.7, and then is evaporation crystallized.
基金Project(2011B0508000033)supported by the Special Project on the Integration of Industry,Education and Research of Ministry of Education and Guangdong Province,China
文摘Cu and As were separated and recovered from copper electrolyte by multiple stage electrowinning, reduction with SO2and evaporative crystallization. Experimental results showed that when the current density was 200 A/m2, the electrolyte temperature was 55 °C, the electrolyte circulation rate was about 10 mL/min and the final Cu concentration was higher than 25.88 g/L, the pure copper cathode was recovered. By adjusting the current density to 100 A/m2 and the electrolyte temperature to 65 °C, the removal rate of As was 18.25% when the Cu concentration decreased from 24.69 g/L to 0.42 g/L. After As(V) in Cu-depleted electrolyte was fully reduced to As(Ⅲ) by SO2, the resultant solution was subjected to evaporative crystallization, then As2O3 was produced, and the recovery rate of As was 59.76%. The cathodic polarization curves demonstrated that both Cu2+ concentration and As(V) affect the limiting current of Cu2+ deposition.
文摘The influences of temperature, H2SO4 concentration, CuSO4 concentration, reaction time and SO2 flow rate on the reduction of arsenic(V) with SO2 were studied and the deposition behavior of arsenic (III) under the effect of concentration and co-crystallization was investigated in copper electrolyte. The results indicate that reduction rate of arsenic (V) decreases with increasing temperature and H2SO4 concentration, but increases with increasing SO2 flow rate and reaction time, and it can reach 92% under appropriate conditions that reaction temperature is 65 °C, H2SO4 concentration is 203 g/L, CuSO4 concentration is 80 g/L, reaction time is 2 h and SO2 gas flow rate is 200 mL/min. To remove arsenic in the copper electrolyte, arsenic (V) is reduced to trivalence under the appropriate conditions, the copper electrolyte is concentrated till H2SO4 concentration reaches 645 g/L, and then the removal rates of As, Cu, Sb and Bi reach 83.9%, 87.1%, 21.0% and 84.7%. The XRD analysis shows that crystallized product obtained contains As2O3 and CuSO4·5H2O.
基金Supported by Key Fund of Guangxi Academy of Agricultural Sciences(2013YZ07)~~
文摘[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by combined atomic fluorescence spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-80.0μg/L of As and 0-8.0 μg/L of Hg, and the detection limits of As and Hg was 0.036 μg/L and 0.015 μg/L, respectively. The precision for elevenfold determination of As at 40.0 ug/L level and Hg at 4.0μg/L level were 1.1% and 2.2%(RSD), respectively. Recoveries of 103.0%-106.6% for As and 90.0%-95.0% for Hg were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of As and Hg in soil samples.
文摘This paper studies the preparation method of As_2O_3 nanoparticles and theirantitumor effect on human liver cancer cells. As_2O_3 nanoparticles were prepared by sol-gel method.As_2O_3 nanoparticles were characterized by transmission electron microscope ( TEM), energydispersive spectrometer ( EDS) and computer color magic image analysis system (CMIAS). A methylthiazolyl tetrazolium (MTT) assay and a flow cytometry (FCM) assay were performed to examine theantitumor effect of As_2O_3 nanoparticlesat various concentrations(1, 2, 5, 10 mumol/L). We alsocompared the antitumor effect of As_2O_3 nanoparticles with that of As_2O_3 solution. The averagediameters of two kinds of As_2O_3 nanoparticles prepared were about 80 nm and 40 nm. It wasidentified that the prepared nanoparticles were As_2O_3 and there were no other components by EDS.After 48 h of treatment with As_2O_3 nanoparticles, the survival ratio of cells was significantlylower than that of the As2O3 solution with the same concentration(P < 0. 05). Experimental resultsdemonstrate that by sol-gel method As_2O_3 can be prepared into nanoparticles. As_2O_3 nanoparticlescan produce a better cytotoxic effect on tumor cells than the As_2O_3 solution.
文摘High pure tellurium was prepared from raw tellurium containing copper and selenium by chemical method containing oxidation with concentrated nitric acid, leaching with hydrochloric acid, reducing with sulfur dioxide and treating in hydrogen atmosphere at high temperature. Removal ratio of Cu in raw tellurium reaches 99% after raw tellurium is oxidized and leached with HNO3(69%) under the following conditions: 0.96 times stoichiometric quantity of concentrated nitric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Leaching ratio of Te reaches 99% after Te is leached with hydrochloric acid under the following conditions: 1.67 times stoichiometric quantity of hydrochloric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Tellurium powder(99.95%) is obtained when Te(IV) in leachate is reduced with sulfur dioxide. The purity of tellurium increases from 99.954% to 99.999 6% after tellurium(99.95%) is treated in hydrogen atmosphere at 723.15 K for 30 min.
文摘Inductively coupled plasma mass spectrometry (ICP-MS) was applied to determine copper, arsenic, cadmium, lead in athletic food using Sc, Ge, In, Bi as an internal standard. The linear correlation factor for four elements are higher than 0.999. Recoveries of spiked samples are in the range of 85.5%-115.5% and precision was fine, RSD is lower than 5.0%. And these are close agreement with the reference values in three standard reference materials of GBW08503, NBS1568, GBW08571. It indicates that the method is simple, rapid, sensitive and accurate, which can meet the demand for copper, arsenic, cadmium, lead analysis in athletic food.
基金Projects(41201493,31300815)supported by the National Natural Science Foundation of China
文摘The effects of different arsenic (As) treatments on spatial pattern of radial oxygen loss (ROL), iron (Fe) plaque formation and As accumulation in rice were investigated using three rice genotypes, planted under greenhouse conditions. Arsenic was applied to soil at 50 and 100 mg/kg, with untreated soil used as a control having an average As concentration of 8.5 mg/kg. It was demonstrated that the ratio of ROL in root tips to that at the root base slightly decreased with increasing As concentration, suggesting that the spatial ROL patterns in these groups may be shifted from the “tight” barrier towards the “partial” barrier form. Furthermore, increasing As concentration led to a increase in Fe plaque formation on root surfaces. In addition, root As concentrations of genotypes in 50 and 100 mg/kg As treatments were significantly higher than that of control treatment (P〈0.05). Grain As concentration of genotype Nanyangzhan (with lower ROL) was significantly higher (P〈0.05) than that of genotype CNT87059-3 with higher ROL.
基金funded by National Science Foundation of China (No. 40606028)National Basic Research Programs of China (No. 2006CB400601and 2001CB409703)
文摘The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observations of 9 cruises carried out in 2000 - 2003. The study area covers a broad range of hydrographic and chemical properties. The emphasis is put on a southeast transect from Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the East China Sea to discuss the impact of terrestdal input on the marginal seas of China. Arsenic species (TDlAs and arsenite) are determined by selective hydride generation - atomic fluorescence spectrometry (HG-AFS). TDIAs concentrations were high in the coastal area of Changjiang Estuary and decreased slightly towards the shelf region. High concentratiOns of TDIAs were also existed in the near bottom layer of shelf edge of the East China Sea which indicated another source of arsenic from the incursion of Kuroshio Waters. The seasonal variations of TDIAs in the study area depend on the hydrographic stages of Changjiang and the incursion intensity of Kuroshio Waters. Arsenite showed opposite distributions with TDIAs, with higher concentrations appeared at the surface layer of shelf region, which was positive correlated with the chlorophyll a. Biological conversion of arsenate into arsenite was hypothesized for the observed distribution pattern and its seasonal variations. The stoichoimetric ratios of As to P were estimated to be about 2×10^3 at PN Section in summer. The concentrations of dissolved arsenic in the Yellow Sea and East China Sea were comparable with other areas in the world.
基金This project was supported by a grant from the National Natural Sciences Foundation of China (No. 30370595).
文摘Objective: To explore the relationship between survivin and drug resistance, and the changes of the survivin expression in HL-60 cells treated with three kinds of chemotherapeutic drugs. Methods: HL- 60 cells were treated with appropriate concentration of daunomycin (DNR), mitoxantrone (MIT) or arsenic trioxide (As2O3). The expression of survivin mRNA and protein on the first or third day was detected by RT-PCR and Western blot respectively. Results: The expression of survivin mRNA was decreased on the first day by 10% in DNR-treated group, 40% in MIT-treated group (P〈0.01) and 25% in As2O3-treated group (P〈0.01) respectively. On the third day, the expression of survivin mRNA in DNR- and MIT-treated group was up-regulated to 120% (P〈0.05) and 165% (P〈0.01) respectively as compared with that on the first day, but down-regulated to 68% in As2O3-treated group (P〈0.01). As compared with control group, the expression of survivin protein in DNR- or MIT-treated group was increased by 14% or 11% on the third day respectively, but it was decreased by 18% in As2O3-treated group. Conclusion: In DNR- and MIT-treated group, the expression of surivin was decreased at first and then increased obviously, which may be one of the causes for resistance to chemotherapy against leukemia. Different from other two drugs, As2O3 may play an important role in restoring chemotherapy sensitivity.