A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing ...Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing water sources. Therefore different types of models with various degrees of complexity were developed to reach this aim. Most of the estimating methods of soil infiltration are expensive and time consuming and these methods estimate infiltration with hypothesis of zero slope. One of the conceptual and physical models for estimating soil infiltration is Green-Ampt model which is similar to Richard model. This model uses slope factor in estimating infiltration and this is the power point of Green-Ampt model. In this research the empirical model of Green-Ampt was optimized with integrating artificial neural network model (ANN) and a model of geographical information system WMS to estimate the infiltration in Kakasharaf watershed. Results of the comparison between the output of this method and real value of infiltration in region (through multiple cylinders) showed that this method can estimate the infiltration rate of Kakasharaf watershed with low error and acceptable accuracy (Nash-Sutcliff performance coefficient 0.821, square error 0.216, correlation coefficient 0.905 and model error 0.024).展开更多
In this paper, the artificial neural network(ANN) model was used to evaluate the degree of intensive urban land use in Nanjing City, China. The construction and application of the ANN model took into account the compr...In this paper, the artificial neural network(ANN) model was used to evaluate the degree of intensive urban land use in Nanjing City, China. The construction and application of the ANN model took into account the comprehensive, spatial and complex nature of urban land use. Through a preliminary calculation of the degree of intensive land use of the sample area, representative sample area selection and using the back propagation neural network model to train, the intensive land use level of each evaluation unit is finally determined in the study area. Results show that the method can effectively correct the errors caused by the limitations of the model itself and the determination of the ideal value and weights when the multifactor comprehensive evaluation is used alone. The ANN model can make the evaluation results more objective and practical. The evaluation results show a tendency of decreasing land use intensity from the core urban area to the periphery and the industrial functional area has relatively low land use intensity compared with other functional areas. Based on the evaluation results, some suggestions are put forward, such as transforming the mode of urban spatial expansion, strengthening the integration and potential exploitation of the land in the urban built-up area, and strengthening the control of the construction intensity of protected areas.展开更多
An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 ...An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 -873 K). The descriptive and predictive capabilities of the ANN model are com- pared with several phenomenological and physically based constitutive models. The ANN model has a much better applicability than the other models in characterization of the flow stress. The tempera- ture and the strain rate effects on the flow stress can be described successfully by the ANN model, with an average error of 1.78% for both quasi-static and dynamic loading conditions. Besides its high accuracy in prediction of the strain rate jump tests, the ANN model is more convenient in model es- tablishment and data processing. The ANN model developed in this study may serve as a valid and ef- fective tool to predict plastic behaviors of the 603 steel under complex loading conditions.展开更多
An accurate assessment of the property value is very important to make a deal, property tax, and mortgage for loan. The mass appraisal system has been developed in some foreign countries, especially in American for a ...An accurate assessment of the property value is very important to make a deal, property tax, and mortgage for loan. The mass appraisal system has been developed in some foreign countries, especially in American for a long time. In Taiwan, we still have few experiences in using computer-assisted mass appraisal system, especially using artificial neural network (ANN). This article has two objectives: (1) to illustrate application of ANN to the Kaohsiung property market by the method of back-propagation. The study is based on the properties data of sales price, we also use multiple regressions in the same data; (2) to evaluate the performance of two models by using the mean absolute percentage error (MAPE) and hit ratio (HR). This paper finds that using artificial neural network (ANN) is able to overcome multiple regressions' methodological problems and also get better performance than multiple regression model (MRA). These results are useful in helping local government to assess their assessment value.展开更多
The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An eff...The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth. Artificial Neural Networks (ANN) perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used. The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network. The single- layer feed-forward neural network with the back propagation algorithm is chosen as one of the well- suited networks after comparing the results. Initially, certain synthetic data sets of all three-layer curves have been taken tk^r training the network, and the network is validated by the field datasets collected from Tuticorin Coastal Region (78°7'30"E and 8°48'45"N), Tamil Nadu, India. The interpretation has been done successfully using the corresponding learning algorithm in the present study. With proper training of back propagation networks, it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network. The network is trained with more Vertical Electrical Sounding (VES) data, and this trained network is demon- strated by the field data. Groundwater table depth also has been modeled.展开更多
A novel and effective artificial neural network(ANN) optimized using differential evolution(DE) is first introduced to provide a robust and reliable forecasting of jet grouted column diameters.The proposed computation...A novel and effective artificial neural network(ANN) optimized using differential evolution(DE) is first introduced to provide a robust and reliable forecasting of jet grouted column diameters.The proposed computational method adopts the DE algorithm to tackle the difficulties in the training and performance of neural networks and optimize the four quintessential hyper-parameters(i.e.the epoch size,the number of neurons in a hidden layer,the number of hidden layers,and the regularization parameter) that govern the neural network efficacy.This approach is further enhanced by a stochastic gradient optimization algorithm to allow ’expensive’ computation efforts.The ANN-DE is first trained using a prepared jet grouting dataset,then verified and compared with the prevalent machine learning tools,i.e.neural networks and support vector machine(SVM).The results show that,the ANN-DE outperforms the existing methods for predicting the diameter of jet grouting columns since it well balances training efficiency and model performance.Specifically,the ANN-DE achieved root mean square error(RMSE)values of 0.90603 and 0.92813 for the training and testing phases,respectively.The corresponding values were 0.8905 and 0.9006 for the optimized ANN,then,0.87569 and 0.89968 for the optimized SVM,respectively.The proposed paradigm is bound to be useful for solving various geotechnical engineering problems regardless of multi-dimension and nonlinearity.展开更多
In this study,we have proposed an artificial neural network(ANN)model to estimate and forecast the number of confirmed and recovered cases of COVID-19 in the upcoming days until September 17,2020.The proposed model is...In this study,we have proposed an artificial neural network(ANN)model to estimate and forecast the number of confirmed and recovered cases of COVID-19 in the upcoming days until September 17,2020.The proposed model is based on the existing data(training data)published in the Saudi Arabia Coronavirus disease(COVID-19)situation—Demographics.The Prey-Predator algorithm is employed for the training.Multilayer perceptron neural network(MLPNN)is used in this study.To improve the performance of MLPNN,we determined the parameters of MLPNN using the prey-predator algorithm(PPA).The proposed model is called the MLPNN–PPA.The performance of the proposed model has been analyzed by the root mean squared error(RMSE)function,and correlation coefficient(R).Furthermore,we tested the proposed model using other existing data recorded in Saudi Arabia(testing data).It is demonstrated that the MLPNN-PPA model has the highest performance in predicting the number of infected and recovering in Saudi Arabia.The results reveal that the number of infected persons will increase in the coming days and become a minimum of 9789.The number of recoveries will be 2000 to 4000 per day.展开更多
Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,...Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,there are limited regression models capable of predicting the PD under multistress levels,and these models have regression limitations and generally fail to cover the complexity of UGM behaviour.Recent researches are focused on using new methods of computational intelligence systems to address the problems,such as artificial neural network(ANN).In this context,we aim to develop an artificial neural model to predict the PD of UGMs exposed to repeated loads.Extensive repeated load triaxial tests(RLTTs)were conducted on base and subbase materials locally available in Victoria,Australia to investigate the PD properties of the tested materials and to prepare the database of the neural networks.Specimens were prepared over different moisture contents and gradations to cover a wide testing matrix.The ANN model consists of one input layer with five neurons,one hidden layer with twelve neurons,and one output layer with one neuron.The five inputs were the number of load cycles,deviatoric stress,moisture content,coefficient of uniformity,and coefficient of curvature.The sensitivity analysis showed that the most important indicator that impacts PD is the number of load cycles with influence factor of 41%.It shows that the ANN method is rapid and efficient to predict the PD,which could be implemented in the Austroads pavement design method.展开更多
Ionic polymer-metal composites (IPMCs) are especially interesting electroactive polymers because they show large a deformation in the presence of a very low driving voltage (around 1 - 2 V) and several applications ha...Ionic polymer-metal composites (IPMCs) are especially interesting electroactive polymers because they show large a deformation in the presence of a very low driving voltage (around 1 - 2 V) and several applications have recently been proposed. Normally a humid environment is required for the best operation, although some IPMCs can operate in a dry environment, after proper encapsulation or if a solid electrolyte is used in the manufacturing process. However, such solutions usually lead to increasing mechanical stiffness and to a reduction of actuation capabilities. In this study we focus on the behaviour of non-encapsulated IPMCs as actuators in dry environments, in order to obtain relevant information for design tasks linked to the development of active devices based on this kind of smart material. The non-linear response obtained in the characterisation tests is especially well-suited to modelling these actuators with the help of artificial neural networks (ANNs). Once trained with the help of characterisation data, such neural networks prove to be a precise simulation tool for describing IPMC response in dry environments.展开更多
In this study, the capability of two different types of models including Hydrological Simulation Program-Fortran (HSPF) as a process-based model and ANN as a data-driven model in simulating runoff was evaluated. The c...In this study, the capability of two different types of models including Hydrological Simulation Program-Fortran (HSPF) as a process-based model and ANN as a data-driven model in simulating runoff was evaluated. The considered area is the Balkhichai River watershed in northwest of Iran. HSPF is a semi-distributed deterministic, continuous and physically-based model that can simulate the hydrologic cycle, associated water quality and quantity and process on pervious and impervious land surfaces and streams. Artificial neural network (ANN) is probably the most successful learning machine technique with flexible mathematical structure which is capable of identifying complex non-linear relationships between input and output data without attempting to reach the understanding of the nature of the phenomena. Statistical approach depending on cross-, auto- and partial-autocorrelation of the observed data is used as a good alternative to the trial and error method in identifying model inputs. The performances of ANN and HSPF models in calibration and validation stages are compared with the observed runoff values in order to identify the best fit forecasting model based upon a number of selected performance criteria. Results of runoff simulation indicated that the simulated runoff by ANN was generally closer to the observed values than those predicted by HSPF.展开更多
On the basis of analysis and selection of factors influencing operation cost of coal resources development, fuzzy set method and artificial neural network (ANN) were adopted to set up the classification analysis model...On the basis of analysis and selection of factors influencing operation cost of coal resources development, fuzzy set method and artificial neural network (ANN) were adopted to set up the classification analysis model of coal resources. The collected samples were classified by using this model. Meanwhile, the pattern recognition model for classifying of the coal resources was built according to the factors influencing operation cost. Based on the results achieved above, in the light of the theory of information diffusion, the calculation model for operation cost of coal resources development has been presented and applied in practice, showing that these models are reasonable.展开更多
Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur...Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process.展开更多
In agent-based automated negotiation research area,a key problem is how to make software agent more adaptable to represent user preferences or suggestions,so that agent can take further proposals that reflect user req...In agent-based automated negotiation research area,a key problem is how to make software agent more adaptable to represent user preferences or suggestions,so that agent can take further proposals that reflect user requirements to implement ecommerce activities like automated transactions.The difficulty lies in the uncertainty of user preferences that include uncertain description and contents,non-linear and dynamic variability.In this paper,fuzzy language was used to describe the uncertainty and combine with multiple classified artificial neural networks(ANNs) for self-adaptive learning of user preferences.The refinement learning results of various negotiation contracts' satisfaction degrees in the extent of fuzzy classification can be achieved.Compared to unclassified computation,the experimental results illustrate that the learning ability and effectiveness of agents have been improved.展开更多
According to the test data of subdivision errors in the measuring cycle of angular measuring system, the characteristics of subdivision errors generated by this system are analyzed. It is found that the subdivision er...According to the test data of subdivision errors in the measuring cycle of angular measuring system, the characteristics of subdivision errors generated by this system are analyzed. It is found that the subdivision errors are mainly due to the rotary-type inductosyn itself. For the characteristic of cyclical change, the subdivision errors in other measuring cycles can be compensated by the subdivision error model in one measuring cycle. Using the measured error data as training samples, combining GA and BP algorithm, an ANN model of subdivision error is designed. Simulation results indicate that GA reduces the uncertainty in the training process of the ANN model, and enhances the generalization of the model. Compared with the error model based on the least-mean-squared method, the designed ANN model of subdivision errors can achieve higher compensating precision.展开更多
Inspired by the modulation mechanism of neuroendocrine-immune system(NEIs),a novel structure of artificial neural network(ANN) named NEI-NN and its learning method are presented.The NEI-NN includes two parts,i.e.,posi...Inspired by the modulation mechanism of neuroendocrine-immune system(NEIs),a novel structure of artificial neural network(ANN) named NEI-NN and its learning method are presented.The NEI-NN includes two parts,i.e.,positive subnetwork(PSN) and negative sub-network(NSN).The neuron functions of PSN and NSN are designed according to the increased and decreased secretion functions of hormone,respectively.In order to make the novel neural network learn quickly,the novel neuron based on some characteristics of NEIs is also redesigned.Besides the normal input signals,two control signals are considered in the proposed solution.One is the enable/disable signal,and the other is the slope control signal.The former can modify the structure of NEI-NN,and the later can regulate the evolutionary speed of NEINN.The NEI-NN can obtain the optimized network structure by using error back-propagation(BP) learning algorithm.Since the modeling of the beam pumping unit is very difficult by using the conventional method,the modeling of bean bump unit is chosen to examine the performance of the NEI-NN.The experiment results show that the optimized structure and learning speed of NEI-NN are better than those of the conventional neural network.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
文摘Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing water sources. Therefore different types of models with various degrees of complexity were developed to reach this aim. Most of the estimating methods of soil infiltration are expensive and time consuming and these methods estimate infiltration with hypothesis of zero slope. One of the conceptual and physical models for estimating soil infiltration is Green-Ampt model which is similar to Richard model. This model uses slope factor in estimating infiltration and this is the power point of Green-Ampt model. In this research the empirical model of Green-Ampt was optimized with integrating artificial neural network model (ANN) and a model of geographical information system WMS to estimate the infiltration in Kakasharaf watershed. Results of the comparison between the output of this method and real value of infiltration in region (through multiple cylinders) showed that this method can estimate the infiltration rate of Kakasharaf watershed with low error and acceptable accuracy (Nash-Sutcliff performance coefficient 0.821, square error 0.216, correlation coefficient 0.905 and model error 0.024).
基金Under the auspices of Special Financial Grant and General Financial Grant from the China Postdoctoral Science Foundation(No.2015T80127,2014M561040)National Natural Science Foundation of China(No.41371172,41401171,41471143)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.164320H101)
文摘In this paper, the artificial neural network(ANN) model was used to evaluate the degree of intensive urban land use in Nanjing City, China. The construction and application of the ANN model took into account the comprehensive, spatial and complex nature of urban land use. Through a preliminary calculation of the degree of intensive land use of the sample area, representative sample area selection and using the back propagation neural network model to train, the intensive land use level of each evaluation unit is finally determined in the study area. Results show that the method can effectively correct the errors caused by the limitations of the model itself and the determination of the ideal value and weights when the multifactor comprehensive evaluation is used alone. The ANN model can make the evaluation results more objective and practical. The evaluation results show a tendency of decreasing land use intensity from the core urban area to the periphery and the industrial functional area has relatively low land use intensity compared with other functional areas. Based on the evaluation results, some suggestions are put forward, such as transforming the mode of urban spatial expansion, strengthening the integration and potential exploitation of the land in the urban built-up area, and strengthening the control of the construction intensity of protected areas.
文摘An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 -873 K). The descriptive and predictive capabilities of the ANN model are com- pared with several phenomenological and physically based constitutive models. The ANN model has a much better applicability than the other models in characterization of the flow stress. The tempera- ture and the strain rate effects on the flow stress can be described successfully by the ANN model, with an average error of 1.78% for both quasi-static and dynamic loading conditions. Besides its high accuracy in prediction of the strain rate jump tests, the ANN model is more convenient in model es- tablishment and data processing. The ANN model developed in this study may serve as a valid and ef- fective tool to predict plastic behaviors of the 603 steel under complex loading conditions.
文摘An accurate assessment of the property value is very important to make a deal, property tax, and mortgage for loan. The mass appraisal system has been developed in some foreign countries, especially in American for a long time. In Taiwan, we still have few experiences in using computer-assisted mass appraisal system, especially using artificial neural network (ANN). This article has two objectives: (1) to illustrate application of ANN to the Kaohsiung property market by the method of back-propagation. The study is based on the properties data of sales price, we also use multiple regressions in the same data; (2) to evaluate the performance of two models by using the mean absolute percentage error (MAPE) and hit ratio (HR). This paper finds that using artificial neural network (ANN) is able to overcome multiple regressions' methodological problems and also get better performance than multiple regression model (MRA). These results are useful in helping local government to assess their assessment value.
文摘The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth. Artificial Neural Networks (ANN) perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used. The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network. The single- layer feed-forward neural network with the back propagation algorithm is chosen as one of the well- suited networks after comparing the results. Initially, certain synthetic data sets of all three-layer curves have been taken tk^r training the network, and the network is validated by the field datasets collected from Tuticorin Coastal Region (78°7'30"E and 8°48'45"N), Tamil Nadu, India. The interpretation has been done successfully using the corresponding learning algorithm in the present study. With proper training of back propagation networks, it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network. The network is trained with more Vertical Electrical Sounding (VES) data, and this trained network is demon- strated by the field data. Groundwater table depth also has been modeled.
基金funded by“The Pearl River Talent Recruitment Program”in 2019 for Professor Shui-Long Shen(Grant No.2019CX01G338),Guangdong Provincethe Research Funding of Shantou University for New Faculty Member(Grant No.NTF19024-2019)。
文摘A novel and effective artificial neural network(ANN) optimized using differential evolution(DE) is first introduced to provide a robust and reliable forecasting of jet grouted column diameters.The proposed computational method adopts the DE algorithm to tackle the difficulties in the training and performance of neural networks and optimize the four quintessential hyper-parameters(i.e.the epoch size,the number of neurons in a hidden layer,the number of hidden layers,and the regularization parameter) that govern the neural network efficacy.This approach is further enhanced by a stochastic gradient optimization algorithm to allow ’expensive’ computation efforts.The ANN-DE is first trained using a prepared jet grouting dataset,then verified and compared with the prevalent machine learning tools,i.e.neural networks and support vector machine(SVM).The results show that,the ANN-DE outperforms the existing methods for predicting the diameter of jet grouting columns since it well balances training efficiency and model performance.Specifically,the ANN-DE achieved root mean square error(RMSE)values of 0.90603 and 0.92813 for the training and testing phases,respectively.The corresponding values were 0.8905 and 0.9006 for the optimized ANN,then,0.87569 and 0.89968 for the optimized SVM,respectively.The proposed paradigm is bound to be useful for solving various geotechnical engineering problems regardless of multi-dimension and nonlinearity.
文摘In this study,we have proposed an artificial neural network(ANN)model to estimate and forecast the number of confirmed and recovered cases of COVID-19 in the upcoming days until September 17,2020.The proposed model is based on the existing data(training data)published in the Saudi Arabia Coronavirus disease(COVID-19)situation—Demographics.The Prey-Predator algorithm is employed for the training.Multilayer perceptron neural network(MLPNN)is used in this study.To improve the performance of MLPNN,we determined the parameters of MLPNN using the prey-predator algorithm(PPA).The proposed model is called the MLPNN–PPA.The performance of the proposed model has been analyzed by the root mean squared error(RMSE)function,and correlation coefficient(R).Furthermore,we tested the proposed model using other existing data recorded in Saudi Arabia(testing data).It is demonstrated that the MLPNN-PPA model has the highest performance in predicting the number of infected and recovering in Saudi Arabia.The results reveal that the number of infected persons will increase in the coming days and become a minimum of 9789.The number of recoveries will be 2000 to 4000 per day.
文摘Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,there are limited regression models capable of predicting the PD under multistress levels,and these models have regression limitations and generally fail to cover the complexity of UGM behaviour.Recent researches are focused on using new methods of computational intelligence systems to address the problems,such as artificial neural network(ANN).In this context,we aim to develop an artificial neural model to predict the PD of UGMs exposed to repeated loads.Extensive repeated load triaxial tests(RLTTs)were conducted on base and subbase materials locally available in Victoria,Australia to investigate the PD properties of the tested materials and to prepare the database of the neural networks.Specimens were prepared over different moisture contents and gradations to cover a wide testing matrix.The ANN model consists of one input layer with five neurons,one hidden layer with twelve neurons,and one output layer with one neuron.The five inputs were the number of load cycles,deviatoric stress,moisture content,coefficient of uniformity,and coefficient of curvature.The sensitivity analysis showed that the most important indicator that impacts PD is the number of load cycles with influence factor of 41%.It shows that the ANN method is rapid and efficient to predict the PD,which could be implemented in the Austroads pavement design method.
文摘Ionic polymer-metal composites (IPMCs) are especially interesting electroactive polymers because they show large a deformation in the presence of a very low driving voltage (around 1 - 2 V) and several applications have recently been proposed. Normally a humid environment is required for the best operation, although some IPMCs can operate in a dry environment, after proper encapsulation or if a solid electrolyte is used in the manufacturing process. However, such solutions usually lead to increasing mechanical stiffness and to a reduction of actuation capabilities. In this study we focus on the behaviour of non-encapsulated IPMCs as actuators in dry environments, in order to obtain relevant information for design tasks linked to the development of active devices based on this kind of smart material. The non-linear response obtained in the characterisation tests is especially well-suited to modelling these actuators with the help of artificial neural networks (ANNs). Once trained with the help of characterisation data, such neural networks prove to be a precise simulation tool for describing IPMC response in dry environments.
文摘In this study, the capability of two different types of models including Hydrological Simulation Program-Fortran (HSPF) as a process-based model and ANN as a data-driven model in simulating runoff was evaluated. The considered area is the Balkhichai River watershed in northwest of Iran. HSPF is a semi-distributed deterministic, continuous and physically-based model that can simulate the hydrologic cycle, associated water quality and quantity and process on pervious and impervious land surfaces and streams. Artificial neural network (ANN) is probably the most successful learning machine technique with flexible mathematical structure which is capable of identifying complex non-linear relationships between input and output data without attempting to reach the understanding of the nature of the phenomena. Statistical approach depending on cross-, auto- and partial-autocorrelation of the observed data is used as a good alternative to the trial and error method in identifying model inputs. The performances of ANN and HSPF models in calibration and validation stages are compared with the observed runoff values in order to identify the best fit forecasting model based upon a number of selected performance criteria. Results of runoff simulation indicated that the simulated runoff by ANN was generally closer to the observed values than those predicted by HSPF.
文摘On the basis of analysis and selection of factors influencing operation cost of coal resources development, fuzzy set method and artificial neural network (ANN) were adopted to set up the classification analysis model of coal resources. The collected samples were classified by using this model. Meanwhile, the pattern recognition model for classifying of the coal resources was built according to the factors influencing operation cost. Based on the results achieved above, in the light of the theory of information diffusion, the calculation model for operation cost of coal resources development has been presented and applied in practice, showing that these models are reasonable.
文摘Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process.
基金National Natural Science Foundation of China (No. 70631003)
文摘In agent-based automated negotiation research area,a key problem is how to make software agent more adaptable to represent user preferences or suggestions,so that agent can take further proposals that reflect user requirements to implement ecommerce activities like automated transactions.The difficulty lies in the uncertainty of user preferences that include uncertain description and contents,non-linear and dynamic variability.In this paper,fuzzy language was used to describe the uncertainty and combine with multiple classified artificial neural networks(ANNs) for self-adaptive learning of user preferences.The refinement learning results of various negotiation contracts' satisfaction degrees in the extent of fuzzy classification can be achieved.Compared to unclassified computation,the experimental results illustrate that the learning ability and effectiveness of agents have been improved.
文摘According to the test data of subdivision errors in the measuring cycle of angular measuring system, the characteristics of subdivision errors generated by this system are analyzed. It is found that the subdivision errors are mainly due to the rotary-type inductosyn itself. For the characteristic of cyclical change, the subdivision errors in other measuring cycles can be compensated by the subdivision error model in one measuring cycle. Using the measured error data as training samples, combining GA and BP algorithm, an ANN model of subdivision error is designed. Simulation results indicate that GA reduces the uncertainty in the training process of the ANN model, and enhances the generalization of the model. Compared with the error model based on the least-mean-squared method, the designed ANN model of subdivision errors can achieve higher compensating precision.
基金the Key Project of the National Natural Science Foundation of China(No.61134009)National Natural Science Foundations of China(Nos.61473078,61271001)+5 种基金Program for Changjiang Scholars from the Ministry of Education,ChinaSpecialized Research Fund for Shanghai Leading Talents,ChinaProject of the Shanghai Committee of Science and Technology,China(No.13JC1407500)the Fundamental Research Funds for the Central Universities,China(No.09CX04026A)Excellent Youth and Middle Age Scientists Fund of Shandong Province,China(No.BS2010DX038)Fundamental Research Funds for the Central Universities,China(No.14CX02171A)
文摘Inspired by the modulation mechanism of neuroendocrine-immune system(NEIs),a novel structure of artificial neural network(ANN) named NEI-NN and its learning method are presented.The NEI-NN includes two parts,i.e.,positive subnetwork(PSN) and negative sub-network(NSN).The neuron functions of PSN and NSN are designed according to the increased and decreased secretion functions of hormone,respectively.In order to make the novel neural network learn quickly,the novel neuron based on some characteristics of NEIs is also redesigned.Besides the normal input signals,two control signals are considered in the proposed solution.One is the enable/disable signal,and the other is the slope control signal.The former can modify the structure of NEI-NN,and the later can regulate the evolutionary speed of NEINN.The NEI-NN can obtain the optimized network structure by using error back-propagation(BP) learning algorithm.Since the modeling of the beam pumping unit is very difficult by using the conventional method,the modeling of bean bump unit is chosen to examine the performance of the NEI-NN.The experiment results show that the optimized structure and learning speed of NEI-NN are better than those of the conventional neural network.