期刊文献+
共找到87,356篇文章
< 1 2 250 >
每页显示 20 50 100
Artificial intelligence-assisted repair of peripheral nerve injury: a new research hotspot and associated challenges 被引量:2
1
作者 Yang Guo Liying Sun +3 位作者 Wenyao Zhong Nan Zhang Zongxuan Zhao Wen Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期663-670,共8页
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on p... Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies. 展开更多
关键词 artificial intelligence artificial prosthesis medical-industrial integration brain-machine interface deep learning machine learning networked hand prosthesis neural interface neural network neural regeneration peripheral nerve
下载PDF
Explainable Artificial Intelligence(XAI)Model for Cancer Image Classification
2
作者 Amit Singhal Krishna Kant Agrawal +3 位作者 Angeles Quezada Adrian Rodriguez Aguiñaga Samantha Jiménez Satya Prakash Yadav 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期401-441,共41页
The use of Explainable Artificial Intelligence(XAI)models becomes increasingly important for making decisions in smart healthcare environments.It is to make sure that decisions are based on trustworthy algorithms and ... The use of Explainable Artificial Intelligence(XAI)models becomes increasingly important for making decisions in smart healthcare environments.It is to make sure that decisions are based on trustworthy algorithms and that healthcare workers understand the decisions made by these algorithms.These models can potentially enhance interpretability and explainability in decision-making processes that rely on artificial intelligence.Nevertheless,the intricate nature of the healthcare field necessitates the utilization of sophisticated models to classify cancer images.This research presents an advanced investigation of XAI models to classify cancer images.It describes the different levels of explainability and interpretability associated with XAI models and the challenges faced in deploying them in healthcare applications.In addition,this study proposes a novel framework for cancer image classification that incorporates XAI models with deep learning and advanced medical imaging techniques.The proposed model integrates several techniques,including end-to-end explainable evaluation,rule-based explanation,and useradaptive explanation.The proposed XAI reaches 97.72%accuracy,90.72%precision,93.72%recall,96.72%F1-score,9.55%FDR,9.66%FOR,and 91.18%DOR.It will discuss the potential applications of the proposed XAI models in the smart healthcare environment.It will help ensure trust and accountability in AI-based decisions,which is essential for achieving a safe and reliable smart healthcare environment. 展开更多
关键词 Explainable artificial intelligence artificial intelligence XAI healthcare CANCER image classification
下载PDF
Artificial Intelligence Prediction of One-Part Geopolymer Compressive Strength for Sustainable Concrete
3
作者 Mohamed Abdel-Mongy Mudassir Iqbal +3 位作者 M.Farag Ahmed.M.Yosri Fahad Alsharari Saif Eldeen A.S.Yousef 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期525-543,共19页
Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for pre... Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for precursors for developing a one-part geopolymer.However,determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported.Therefore,in this study,machine learning methods such as artificial neural networks(ANN)and gene expression programming(GEP)models were developed usingMATLAB and GeneXprotools,respectively,for the prediction of compressive strength under variable input materials and content for fly ash and slag-based one-part geopolymer.The database for this study contains 171 points extracted from literature with input parameters:fly ash concentration,slag content,calcium hydroxide content,sodium oxide dose,water binder ratio,and curing temperature.The performance of the two models was evaluated under various statistical indices,namely correlation coefficient(R),mean absolute error(MAE),and rootmean square error(RMSE).In terms of the strength prediction efficacy of a one-part geopolymer,ANN outperformed GEP.Sensitivity and parametric analysis were also performed to identify the significant contributor to strength.According to a sensitivity analysis,the activator and slag contents had the most effects on the compressive strength at 28 days.The water binder ratio was shown to be directly connected to activator percentage,slag percentage,and calcium hydroxide percentage and inversely related to compressive strength at 28 days and curing temperature. 展开更多
关键词 artificial intelligence techniques one-part geopolymer artificial neural network gene expression modelling sustainable construction polymers
下载PDF
Advancements in Barrett's esophagus detection:The role of artificial intelligence and its implications
4
作者 Sara Massironi 《World Journal of Gastroenterology》 SCIE CAS 2024年第11期1494-1496,共3页
Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utili... Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utilized endoscopic images to train an AI model,challenging the traditional distinction between endoscopic and histological BE.This approach yielded remarkable results,with the AI system achieving an accuracy of 94.37%,sensitivity of 94.29%,and specificity of 94.44%.The study's extensive dataset enhances the AI model's practicality,offering valuable support to endoscopists by minimizing unnecessary biopsies.However,questions about the applicability to different endoscopic systems remain.The study underscores the potential of AI in BE detection while highlighting the need for further research to assess its adaptability to diverse clinical settings. 展开更多
关键词 Barrett's esophagus artificial intelligence Endoscopic images artificial intelligence model Early cancer detection ENDOSCOPY
下载PDF
Artificial intelligence in individualized retinal disease management
5
作者 Zi-Ran Zhang Jia-Jun Li Ke-Ran Li 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第8期1519-1530,共12页
Owing to the rapid development of modern computer technologies,artificial intelligence(AI)has emerged as an essential instrument for intelligent analysis across a range of fields.AI has been proven to be highly effect... Owing to the rapid development of modern computer technologies,artificial intelligence(AI)has emerged as an essential instrument for intelligent analysis across a range of fields.AI has been proven to be highly effective in ophthalmology,where it is frequently used for identifying,diagnosing,and typing retinal diseases.An increasing number of researchers have begun to comprehensively map patients’retinal diseases using AI,which has made individualized clinical prediction and treatment possible.These include prognostic improvement,risk prediction,progression assessment,and interventional therapies for retinal diseases.Researchers have used a range of input data methods to increase the accuracy and dependability of the results,including the use of tabular,textual,or image-based input data.They also combined the analyses of multiple types of input data.To give ophthalmologists access to precise,individualized,and high-quality treatment strategies that will further optimize treatment outcomes,this review summarizes the latest findings in AI research related to the prediction and guidance of clinical diagnosis and treatment of retinal diseases. 展开更多
关键词 artificial intelligence artificial intelligence in ophthalmology retinal disease
下载PDF
A Discussion of Artificial Intelligence in Visual Art Education
6
作者 Joanna Black Tom Chaput 《Journal of Computer and Communications》 2024年第5期71-85,共15页
Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologi... Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologies as Siri, Google, and Netflix deploy AI algorithms to answer questions, impart information, and provide recommendations. However, many individuals including originators and backers of AI have recently expressed grave concerns. In this paper, the authors will assess what is occurring with AI in Visual Arts Education, outline positives and negatives, and provide recommendations addressed specifically for teachers working in the field regarding emerging AI usage from kindergarten to grade twelve levels as well as in higher education. 展开更多
关键词 Visual Art Education Art Education artificial Intelligence AI Generative artificial Intelligence GAI Art Teaching and Learning Art Pedagogy Art Curriculum Development Digital Art Education ART Art Education Critical Literacy
下载PDF
Artificial intelligence for characterization of diminutive colorectal polyps:A feasibility study comparing two computer-aided diagnosis systems
7
作者 Quirine Eunice Wennie van der Zander Ramon M Schreuder +9 位作者 Ayla Thijssen Carolus H J Kusters Nikoo Dehghani Thom Scheeve Bjorn Winkens Mirjam C M van der Ende-van Loon Peter H N de With Fons van der Sommen Ad A M Masclee Erik J Schoon 《Artificial Intelligence in Gastrointestinal Endoscopy》 2024年第1期11-22,共12页
BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Poly... BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Polyps(AI4CRP)for the optical diagnosis of diminutive colorectal polyps and to compare the performance with CAD EYE^(TM)(Fujifilm,Tokyo,Japan).CADx influence on the optical diagnosis of an expert endoscopist was also investigated.METHODS AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm.Both CADxsystems exploit convolutional neural networks.Colorectal polyps were characterized as benign or premalignant and histopathology was used as gold standard.AI4CRP provided an objective assessment of its characterization by presenting a calibrated confidence characterization value(range 0.0-1.0).A predefined cut-off value of 0.6 was set with values<0.6 indicating benign and values≥0.6 indicating premalignant colorectal polyps.Low confidence characterizations were defined as values 40%around the cut-off value of 0.6(<0.36 and>0.76).Self-critical AI4CRP’s diagnostic performances excluded low confidence characterizations.RESULTS AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps.Self-critical AI4CRP,excluding 14 low confidence characterizations[27.5%(14/51)],had a diagnostic accuracy of 89.2%,sensitivity of 89.7%,and specificity of 87.5%,which was higher compared to AI4CRP.CAD EYE had a 83.7%diagnostic accuracy,74.2%sensitivity,and 100.0%specificity.Diagnostic performances of the endoscopist alone(before AI)increased nonsignificantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE(AI-assisted endoscopist).Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems,except for specificity for which CAD EYE performed best.CONCLUSION Real-time use of AI4CRP was feasible.Objective confidence values provided by a CADx is novel and self-critical AI4CRP showed higher diagnostic performances compared to AI4CRP. 展开更多
关键词 artificial intelligence Colorectal polyp characterization Computer aided diagnosis Diminutive colorectal polyps Optical diagnosis Self-critical artificial intelligence
下载PDF
Application of artificial hibernation technology in acute brain injury 被引量:1
8
作者 Xiaoni Wang Shulian Chen +5 位作者 Xiaoyu Wang Zhen Song Ziqi Wang Xiaofei Niu Xiaochu Chen Xuyi Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1940-1946,共7页
Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment ... Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment methods.Hibernation has the characteristics of low temperature,low metabolism,and hibernation rhythm,as well as protective effects on the nervous,cardiovascular,and motor systems.Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body’s metabolism,lowering the body’s core temperature,and allowing the body to enter a state similar to hibernation.This review introduces artificial hibernation technology,including mild hypothermia treatment technology,central nervous system regulation technology,and artificial hibernation-inducer technology.Upon summarizing the relevant research on artificial hibernation technology in acute brain injury,the research results show that artificial hibernation technology has neuroprotective,anti-inflammatory,and oxidative stress-resistance effects,indicating that it has therapeutic significance in acute brain injury.Furthermore,artificial hibernation technology can alleviate the damage of ischemic stroke,traumatic brain injury,cerebral hemorrhage,cerebral infarction,and other diseases,providing new strategies for treating acute brain injury.However,artificial hibernation technology is currently in its infancy and has some complications,such as electrolyte imbalance and coagulation disorders,which limit its use.Further research is needed for its clinical application. 展开更多
关键词 cute brain injury artificial hibernation HYPOTHERMIA low metabolism mild hypothermia
下载PDF
A data-driven model of drop size prediction based on artificial neural networks using small-scale data sets 被引量:1
9
作者 Bo Wang Han Zhou +3 位作者 Shan Jing Qiang Zheng Wenjie Lan Shaowei Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期71-83,共13页
An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and ... An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and 9.3%,respectively.Through ANN model,the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed.Droplet size gradually increases with the increase of interfacial tension,and decreases with the increase of pulse intensity.It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range.For two kinds of columns,the drop size prediction deviations of ANN model are 9.6%and 18.5%and the deviations in correlations are 11%and 15%. 展开更多
关键词 artificial neural network Drop size Solvent extraction Pulsed column Two-phase flow HYDRODYNAMICS
下载PDF
Artificial intelligence-driven radiomics study in cancer:the role of feature engineering and modeling 被引量:1
10
作者 Yuan-Peng Zhang Xin-Yun Zhang +11 位作者 Yu-Ting Cheng Bing Li Xin-Zhi Teng Jiang Zhang Saikit Lam Ta Zhou Zong-Rui Ma Jia-Bao Sheng Victor CWTam Shara WYLee Hong Ge Jing Cai 《Military Medical Research》 SCIE CAS CSCD 2024年第1期115-147,共33页
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of... Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research. 展开更多
关键词 artificial intelligence Radiomics Feature extraction Feature selection Modeling INTERPRETABILITY Multimodalities Head and neck cancer
下载PDF
Toward a Learnable Climate Model in the Artificial Intelligence Era 被引量:1
11
作者 Gang HUANG Ya WANG +3 位作者 Yoo-Geun HAM Bin MU Weichen TAO Chaoyang XIE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1281-1288,共8页
Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of ... Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal. 展开更多
关键词 artificial intelligence deep learning learnable climate model
下载PDF
The future of artificial hibernation medicine:protection of nerves and organs after spinal cord injury 被引量:1
12
作者 Caiyun Liu Haixin Yu +4 位作者 Zhengchao Li Shulian Chen Xiaoyin Li Xuyi Chen Bo Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期22-28,共7页
Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hi... Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine. 展开更多
关键词 artificial hibernation central thermostatic-resista nt regulation hypothermia multi-system protection neuroprotection organ protection spinal cord injury synthetic torpor
下载PDF
Exploration of Graduate Student Cultivation Mode of Landscape Architecture under the Background of“Artificial Intelligence+X” 被引量:1
13
作者 CAO Yangyang ZENG Junfeng 《Journal of Landscape Research》 2024年第1期67-69,76,共4页
Under the background of“artificial intelligence+X”,the development of landscape architecture industry ushers in new opportunities,and professional talents need to be updated to meet the social demand.This paper anal... Under the background of“artificial intelligence+X”,the development of landscape architecture industry ushers in new opportunities,and professional talents need to be updated to meet the social demand.This paper analyzes the cultivation demand of landscape architecture graduate students in the context of the new era,and identifies the problems by comparing the original professional graduate training mode.The new cultivation mode of graduate students in landscape architecture is proposed,including updating the target orientation of the discipline,optimizing the teaching system,building a“dualteacher”tutor team,and improving the“industry-university-research-utilization”integrated cultivation,so as to cultivate high-quality compound talents with disciplinary characteristics. 展开更多
关键词 artificial intelligence+ Landscape architecture Graduate training model Professional talent
下载PDF
The Variation of Plankton Community Structure in Artificial Reef Area and Adjacent Waters in Haizhou Bay
14
作者 GAO Shike SHI Yixi +1 位作者 LU Yanan ZHANG Shuo 《Journal of Ocean University of China》 CAS CSCD 2024年第1期264-276,共13页
Plankton are an important component of marine protected areas(MPAs),and its communities would require much smaller interpatch distances to ensure connection among MPAs.According to the survey from MPAs dominated by ar... Plankton are an important component of marine protected areas(MPAs),and its communities would require much smaller interpatch distances to ensure connection among MPAs.According to the survey from MPAs dominated by artificial reefs and adjacent waters(estuary area(EA),aquaculture area(AA),artificial reef area(ARA),natural area(NA)and comprehensive effect area(CEA))in Haizhou Bay in spring and autumn,we analyzed phyto-zooplankton composition,abundance and biomass,and correlation with hydrologic variables to gain information about the forces that structure the plankton.The results showed that the dominant zooplankton were copepods(spring,98.9%;autumn,94.2%),while the phytoplankton were mainly composed of Bacillariophyta(spring,61.8%;autumn,95.6%).The RDA results showed that temperature,salinity and depth highly associated with the distribution and composition of plankton species among the habitats than other factors in spring;temperature,Chla and DO had the strongest influence in autumn.The zooplankton in the ARA and AA ecosystems basically contained the same species as those in other habitats,and each habitat also exhibited a relatively unique combination of plankton species.The structures of the EA zooplankton in spring and the EA phytoplankton in both seasons were much different than other habitats,which may have been caused by factors such as currents and tides.We concluded that there exists similarity of the plankton community between artificial reef area and adjacent waters,whereas the EAs may be relatively independent systems.Therefore,these interaction between plankton community should be considered when designing MPA networks,and ocean circulations should be considered more than the environmental factors. 展开更多
关键词 ZOOPLANKTON PHYTOPLANKTON seasonal variation environmental factor artificial reef
下载PDF
A scoping review of methodologies for applying artificial intelligence to physical activity interventions
15
作者 Ruopeng An Jing Shen +1 位作者 Junjie Wang Yuyi Yang 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第3期428-441,共14页
Purpose This scoping review aimed to offer researchers and practitioners an understanding of artificial intelligence(AI)applications in physical activity(PA)interventions;introduce them to prevalent machine learning(M... Purpose This scoping review aimed to offer researchers and practitioners an understanding of artificial intelligence(AI)applications in physical activity(PA)interventions;introduce them to prevalent machine learning(ML),deep learning(DL),and reinforcement learning(RL)algorithms;and encourage the adoption of AI methodologies.Methods A scoping review was performed in PubMed,Web of Science,Cochrane Library,and EBSCO focusing on AI applications for promoting PA or predicting related behavioral or health outcomes.AI methodologies were summarized and categorized to identify synergies,patterns,and trends informing future research.Additionally,a concise primer on predominant AI methodologies within the realm of PA was provided to bolster understanding and broader application.Results The review included 24 studies that met the predetermined eligibility criteria.AI models were found effective in detecting significant patterns of PA behavior and associations between specific factors and intervention outcomes.Most studies comparing AI models to traditional statistical approaches reported higher prediction accuracy for AI models on test data.Comparisons of different AI models yielded mixed results,likely due to model performance being highly dependent on the dataset and task.An increasing trend of adopting state-of-the-art DL and RL models over standard ML was observed,addressing complex human–machine communication,behavior modification,and decision-making tasks.Six key areas for future AI adoption in PA interventions emerged:personalized PA interventions,real-time monitoring and adaptation,integration of multimodal data sources,evaluation of intervention effectiveness,expanding access to PA interventions,and predicting and preventing injuries.Conclusion The scoping review highlights the potential of AI methodologies for advancing PA interventions.As the field progresses,staying informed and exploring emerging AI-driven strategies is essential for achieving significant improvements in PA interventions and fostering overall well-being. 展开更多
关键词 artificial intelligence INTERVENTION Machine learning Neural network Physical activity
下载PDF
European Union Issues World’s First Comprehensive Regulations for Artificial Intelligence
16
作者 Chris Palmer 《Engineering》 SCIE EI CAS CSCD 2024年第7期5-7,共3页
In March 2024,European Union(EU)lawmakers passed the world’s first comprehensive set of regulations governing the use of artificial intelligence(AI)[1].The EU’s AI Act,two and a half years in the making,was initiall... In March 2024,European Union(EU)lawmakers passed the world’s first comprehensive set of regulations governing the use of artificial intelligence(AI)[1].The EU’s AI Act,two and a half years in the making,was initially drawn up as a landmark bill to reduce harm in areas in which AI was thought to pose the biggest risks to people,such as in health care,education,and security,as well as banning uses that pose“unacceptable risks,”including manipulation of human behavior and evaluation of individuals’trustworthiness based on personal characteristics.According to the regulations,which will go into effect in stages over the next two years,“high-risk”AI systems will require risk-mitigation strategies,high-quality data sets,transparency,better documentation,and human supervision.The most common current AI uses,such as augmenting recommendation engines and email spam filters,will see far less oversight. 展开更多
关键词 EMAIL artificial TRANSPARENCY
下载PDF
Magnetic Nonreciprocity in a Hybrid Device of Asymmetric Artificial Spin-Ice-Superconductors
17
作者 李冲 黄培源 +15 位作者 王晨光 李浩杰 吕阳阳 岳文诚 袁子雄 李甜雨 涂学凑 陶涛 董思宁 何亮 贾小氢 孙国柱 康琳 王华兵 吴培亨 王永磊 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第6期119-127,共9页
Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid d... Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets.This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices,thereby inducing a magnetic nonreciprocal effect,in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes.Furthermore,the polarity of the magnetic nonreciprocity is in situ reversible through the tunable magnetic patterns of artificial spin ice.Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities,offering a groundbreaking paradigm for superconducting electronics. 展开更多
关键词 artificial COLLECTIVE reciprocal
下载PDF
Construction of a Cu@hollow TS-1 nanoreactor based on a hierarchical full-spectrum solar light utilization strategy for photothermal synergistic artificial photosynthesis
18
作者 Sixian Zhu Qiao Zhao +5 位作者 Hongxia Guo Li Liu Xiao Wang Xiwei Qi Xianguang Meng Wenquan Cui 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期25-36,共12页
The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosyn... The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosynthesis by coupling both photochemistry and thermochemistry.However,strategies for maximizing the use of solar spectra with different frequencies in photothermal catalysis are urgently needed.Here,a hierarchical full-spectrum solar light utilization strategy is proposed.Based on this strategy,a Cu@hollow titanium silicalite-1 zeolite(TS-1)nanoreactor with spatially separated photo/thermal catalytic sites is designed to realize high-efficiency photothermal catalytic artificial photosynthesis.The space-time yield of alcohol products over the optimal catalyst reached 64.4μmol g−1 h−1,with the selectivity of CH3CH2OH of 69.5%.This rationally designed hierarchical utilization strategy for solar light can be summarized as follows:(1)high-energy ultraviolet light is utilized to drive the initial and difficult CO_(2) activation step on the TS-1 shell;(2)visible light can induce the localized surface plasmon resonance effect on plasmonic Cu to generate hot electrons for H2O dissociation and subsequent reaction steps;and(3)low-energy near-infrared light is converted into heat by the simulated greenhouse effect by cavities to accelerate the carrier dynamics.This work provides some scientific and experimental bases for research on novel,highly efficient photothermal catalysts for artificial photosynthesis. 展开更多
关键词 artificial photosynthesis full spectrum NANOREACTORS photothermal catalysis
下载PDF
Artificial ground freezing of underground mines in cold regions using thermosyphons with air insulation
19
作者 Ahmad F.Zueter Mohammad Zolfagharroshan +1 位作者 Navid Bahrani Agus P.Sasmito 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期643-654,共12页
Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl... Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF. 展开更多
关键词 artificial ground freezing Underground mining Sustainable mining THERMOSYPHON Air insulation Cold regions
下载PDF
Single-cell pan-omics, environmental neurology, and artificial intelligence:the time for holistic brain health research
20
作者 Paolo Abondio Francesco Bruno 《Neural Regeneration Research》 SCIE CAS 2025年第6期1703-1704,共2页
The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As t... The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As traditional methods have provided valuable insights,emerging technologies offer unprecedented opportunities to delve deeper into the underpinnings of brain function.In the everevolving landscape of neuroscience,the quest to unravel the mysteries of the human brain is bound to take a leap forward thanks to new technological improvements and bold interpretative frameworks. 展开更多
关键词 function artificial LANDSCAPE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部