期刊文献+
共找到1,983篇文章
< 1 2 100 >
每页显示 20 50 100
Artificial Intelligence Based Multi-Scenario mmWave Channel Modeling for Intelligent High-Speed Train Communications
1
作者 Zhang Mengjiao Liu Yu +4 位作者 Huang Jie He Ruisi Zhang Jingfan Yu Chongyang Wang Chengxiang 《China Communications》 SCIE CSCD 2024年第3期260-272,共13页
A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a tr... A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a trend.This paper provides AI based channel characteristic prediction and scenario classification model for millimeter wave(mmWave)HST communications.Firstly,the ray tracing method verified by measurement data is applied to reconstruct four representative HST scenarios.By setting the positions of transmitter(Tx),receiver(Rx),and other parameters,the multi-scenarios wireless channel big data is acquired.Then,based on the obtained channel database,radial basis function neural network(RBF-NN)and back propagation neural network(BP-NN)are trained for channel characteristic prediction and scenario classification.Finally,the channel characteristic prediction and scenario classification capabilities of the network are evaluated by calculating the root mean square error(RMSE).The results show that RBF-NN can generally achieve better performance than BP-NN,and is more applicable to prediction of HST scenarios. 展开更多
关键词 artificial intelligence channel characteristic prediction HST channel millimeter wave scenario classification
下载PDF
The enlightenment of artificial intelligence large-scale model on the research of intelligent eye diagnosis in traditional Chinese medicine
2
作者 GAO Yuan WU Zixuan +4 位作者 SHENG Boyang ZHANG Fu CHENG Yong YAN Junfeng PENG Qinghua 《Digital Chinese Medicine》 CAS CSCD 2024年第2期101-107,共7页
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ... Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications. 展开更多
关键词 Traditional Chinese medicine(TCM) Eye diagnosis artificial intelligence(AI) Large-scale model Self-supervised learning Deep neural network
下载PDF
Artificial-intelligent-powered safety and efficiency improvement for controlling and scheduling in integrated railway systems
3
作者 Jun Liu Gehui Liu +1 位作者 Yu Wang Wanqiu Zhang 《High-Speed Railway》 2024年第3期172-179,共8页
The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation s... The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation services.With the expansion of the railway networks,enhancing the efficiency and safety of the comprehensive system has become a crucial issue in the advanced development of railway transportation.In light of the prevailing application of artificial intelligence technologies within railway systems,this study leverages large model technology characterized by robust learning capabilities,efficient associative abilities,and linkage analysis to propose an Artificial-intelligent(AI)-powered railway control and dispatching system.This system is elaborately designed with four core functions,including global optimum unattended dispatching,synergetic transportation in multiple modes,high-speed automatic control,and precise maintenance decision and execution.The deployment pathway and essential tasks of the system are further delineated,alongside the challenges and obstacles encountered.The AI-powered system promises a significant enhancement in the operational efficiency and safety of the composite railway system,ensuring a more effective alignment between transportation services and passenger demands. 展开更多
关键词 High-speed railway Multi-mode railway system artificial intelligence Large-scale mode system framework Safety and efficiency improvement
下载PDF
Recent Advances in Artificial Sensory Neurons:Biological Fundamentals,Devices,Applications,and Challenges
4
作者 Shuai Zhong Lirou Su +4 位作者 Mingkun Xu Desmond Loke Bin Yu Yishu Zhang Rong Zhao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期168-216,共49页
Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage... Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons. 展开更多
关键词 artificial intelligence Emerging devices artificial sensory neurons Spiking neural networks Neuromorphic sensing
下载PDF
Gallbladder carcinoma in the era of artificial intelligence: Early diagnosis for better treatment
5
作者 Ismail AS Burud Sherreen Elhariri Nabil Eid 《World Journal of Gastrointestinal Oncology》 SCIE 2025年第1期256-259,共4页
Gallbladder carcinoma(GBC)is the most common malignant tumor of biliary tract,with poor prognosis due to its aggressive nature and limited therapeutic options.Early detection of GBC is a major challenge,with most GBCs... Gallbladder carcinoma(GBC)is the most common malignant tumor of biliary tract,with poor prognosis due to its aggressive nature and limited therapeutic options.Early detection of GBC is a major challenge,with most GBCs being detected accidentally during cholecystectomy procedures for gallbladder stones.This letter comments on the recent article by Deqing et al in the World Journal of Gastrointestinal Oncology,which summarized the various current methods used in early diagnosis of GBC,including endoscopic ultrasound(EUS)examination of the gallbladder for high-risk GBC patients,and the use of EUS-guided elasto-graphy,contrast-enhanced EUS,trans-papillary biopsy,natural orifice translu-minal endoscopic surgery,magnifying endoscopy,choledochoscopy,and confocal laser endomicroscopy when necessary for early diagnosis of GBC.However,there is a need for novel methods for early GBC diagnosis,such as the use of artificial intelligence and non-coding RNA biomarkers for improved screening protocols.Additionally,the use of in vitro and animal models may provide critical insights for advancing early detection and treatment strategies of this aggressive tumor. 展开更多
关键词 Gallbladder carcinoma Endoscopic ultrasound BIOPSY ELASTOGRAPHY Cho-ledochoscopy artificial intelligence Non-coding RNAs Screening Animal models In vitro studies
下载PDF
Revolutionizing diabetic retinopathy screening and management:The role of artificial intelligence and machine learning
6
作者 Mona Mohamed Ibrahim Abdalla Jaiprakash Mohanraj 《World Journal of Clinical Cases》 SCIE 2025年第5期1-12,共12页
Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transforma... Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transformative potential of artificial intelligence(AI)and machine learning(ML)in revolutionizing DR care.AI and ML technologies have demonstrated remarkable advancements in enhancing the accuracy,efficiency,and accessibility of DR screening,helping to overcome barriers to early detection.These technologies leverage vast datasets to identify patterns and predict disease progression with unprecedented precision,enabling clinicians to make more informed decisions.Furthermore,AI-driven solutions hold promise in personalizing management strategies for DR,incorpo-rating predictive analytics to tailor interventions and optimize treatment path-ways.By automating routine tasks,AI can reduce the burden on healthcare providers,allowing for a more focused allocation of resources towards complex patient care.This review aims to evaluate the current advancements and applic-ations of AI and ML in DR screening,and to discuss the potential of these techno-logies in developing personalized management strategies,ultimately aiming to improve patient outcomes and reduce the global burden of DR.The integration of AI and ML in DR care represents a paradigm shift,offering a glimpse into the future of ophthalmic healthcare. 展开更多
关键词 Diabetic retinopathy artificial intelligence Machine learning SCREENING MANAGEMENT Predictive analytics Personalized medicine
下载PDF
Diabetes mellitus and glymphatic dysfunction:Roles for oxidative stress,mitochondria,circadian rhythm,artificial intelligence,and imaging
7
作者 Kenneth Maiese 《World Journal of Diabetes》 SCIE 2025年第1期39-48,共10页
Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals an... Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction. 展开更多
关键词 artificial intelligence Circadian rhythm Clock genes Diabetes mellitus magnetic resonance imaging Glymphatic pathway MITOCHONDRIA Oxidative stress Programmed cell death Sleep fragmentation
下载PDF
Recognition and quality mapping of traditional herbal drugs:way forward towards artificial intelligence
8
作者 Sanyam Sharma Subh Naman Ashish Baldi 《Traditional Medicine Research》 2025年第1期12-26,共15页
The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for ident... The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for identifying and mapping the quality of these herbal medicines.This article aims to provide practical insights into the application of artificial intelligence for quality-based commercialization of raw herbal drugs.It focuses on feature extraction methods,image processing techniques,and the preparation of herbal images for compatibility with machine learning models.The article discusses commonly used image processing tools such as normalization,slicing,cropping,and augmentation to prepare images for artificial intelligence-based models.It also provides an overview of global herbal image databases and the models employed for herbal plant/drug identification.Readers will gain a comprehensive understanding of the potential application of various machine learning models,including artificial neural networks and convolutional neural networks.The article delves into suitable validation parameters like true positive rates,accuracy,precision,and more for the development of artificial intelligence-based identification and authentication techniques for herbal drugs.This article offers valuable insights and a conclusive platform for the further exploration of artificial intelligence in the field of herbal drugs,paving the way for smarter identification and authentication methods. 展开更多
关键词 artificial intelligence AYURVEDA machine learning models herbal drugs image pre-processing medicinal plants
下载PDF
Harnessing artificial intelligence for identifying conflicts of interest in research
9
作者 Abdulqadir J Nashwan 《World Journal of Methodology》 2025年第1期6-8,共3页
This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recogni... This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recognition,and natural language processing techniques,AI offers innovative solutions for enhancing transparency and integrity in research.This editorial discusses how AI can automatically detect COIs,integrate data from various sources,and streamline reporting processes,thereby maintaining the credibility of scientific findings. 展开更多
关键词 artificial intelligence Conflicts of interest TRANSPARENCY Research integrity Natural language processing
下载PDF
Artificial intelligence and the impact of multiomics on the reporting of case reports
10
作者 Aishwarya Boini Vincent Grasso +1 位作者 Heba Taher Andrew A Gumbs 《World Journal of Clinical Cases》 2025年第15期1-6,共6页
The integration of artificial intelligence(AI)and multiomics has transformed clinical and life sciences,enabling precision medicine and redefining disease understanding.Scientific publications grew significantly from ... The integration of artificial intelligence(AI)and multiomics has transformed clinical and life sciences,enabling precision medicine and redefining disease understanding.Scientific publications grew significantly from 2.1 million in 2012 to 3.3 million in 2022,with AI research tripling during this period.Multiomics fields,including genomics and proteomics,also advanced,exemplified by the Human Proteome Project achieving a 90%complete blueprint by 2021.This growth highlights opportunities and challenges in integrating AI and multiomics into clinical reporting.A review of studies and case reports was conducted to evaluate AI and multiomics integration.Key areas analyzed included diagnostic accuracy,predictive modeling,and personalized treatment approaches driven by AI tools.Case examples were studied to assess impacts on clinical decision-making.AI and multiomics enhanced data integration,predictive insights,and treatment personalization.Fields like radiomics,genomics,and proteomics improved diagnostics and guided therapy.For instance,the“AI radiomics,geno-mics,oncopathomics,and surgomics project”combined radiomics and genomics for surgical decision-making,enabling preoperative,intraoperative,and post-operative interventions.AI applications in case reports predicted conditions like postoperative delirium and monitored cancer progression using genomic and imaging data.AI and multiomics enable standardized data analysis,dynamic updates,and predictive modeling in case reports.Traditional reports often lack objectivity,but AI enhances reproducibility and decision-making by processing large datasets.Challenges include data standardization,biases,and ethical concerns.Overcoming these barriers is vital for optimizing AI applications and advancing personalized medicine.AI and multiomics integration is revolutionizing clinical research and practice.Standardizing data reporting and addressing challenges in ethics and data quality will unlock their full potential.Emphasizing collaboration and transparency is essential for leveraging these tools to improve patient care and scientific communication. 展开更多
关键词 artificial intelligence Multiomics Precision medicine GENOMICS PROTEOMICS Metabolomics Radiomics Pathomics Surgomics Predictive modeling
下载PDF
Leveraging Artificial Intelligence to Achieve Sustainable Public Healthcare Services in Saudi Arabia: A Systematic Literature Review of Critical Success Factors
11
作者 Rakesh Kumar Ajay Singh +3 位作者 Ahmed Subahi Ahmed Kassar Mohammed Ismail Humaida Sudhanshu Joshi Manu Sharma 《Computer Modeling in Engineering & Sciences》 2025年第2期1289-1349,共61页
This review aims to analyze the development and impact of Artificial Intelligence(AI)in the context of Saudi Arabia’s public healthcare system to fulfill Vision 2030 objectives.It is extensively devoted to AI technol... This review aims to analyze the development and impact of Artificial Intelligence(AI)in the context of Saudi Arabia’s public healthcare system to fulfill Vision 2030 objectives.It is extensively devoted to AI technology deployment relevant to disease management,healthcare delivery,epidemiology,and policy-making.However,its AI is culturally sensitive and ethically grounded in Islam.Based on the PRISMA framework,an SLR evaluated primary academic literature,cases,and practices of Saudi Arabia’s AI implementation in the public healthcare sector.Instead,it categorizes prior research based on how AI can work,the issues it poses,and its implications for the Kingdom’s healthcare system.The Saudi Arabian context analyses show that AI has increased the discreet prediction of diseases,resource management,and monitoring outbreaks during mass congregations such as hajj.Therefore,the study outlines critical areas for defining the potential for artificial intelligence and areas for enhancing digital development to support global healthcare progress.The key themes emerging from the review include Saudi Arabia:(i)the effectiveness of AI with human interaction for sustainable health services;(ii)conditions and quality control to enhance the quality of health care services using AI;(iii)environmental factors as influencing factors for public health care;(iv)Artificial Intelligence,and advanced decision-making technology for Middle Eastern health care systems.For policymakers,healthcare managers,and researchers who will engage with AI innovation,the review proclaims that AI applications should respect the country’s socio-cultural and ethical practices and pave the way for sustainable healthcare provision.More empirical research is needed on the implementation issues with AI,creating culturally appropriate models of AI,and finding new applications of AI to address the increasing demand for healthcare services in Saudi Arabia. 展开更多
关键词 artificial intelligence public health services SUSTAINABILITY healthcare Saudi Arabia PRISMA
下载PDF
Multimodal artificial intelligence system for detecting a small esophageal high-grade squamous intraepithelial neoplasia: A case report
12
作者 Yang Zhou Rui-De Liu +3 位作者 Hui Gong Xiang-Lei Yuan Bing Hu Zhi-Yin Huang 《World Journal of Gastrointestinal Endoscopy》 2025年第1期61-65,共5页
BACKGROUND Recent advancements in artificial intelligence(AI)have significantly enhanced the capabilities of endoscopic-assisted diagnosis for gastrointestinal diseases.AI has shown great promise in clinical practice,... BACKGROUND Recent advancements in artificial intelligence(AI)have significantly enhanced the capabilities of endoscopic-assisted diagnosis for gastrointestinal diseases.AI has shown great promise in clinical practice,particularly for diagnostic support,offering real-time insights into complex conditions such as esophageal squamous cell carcinoma.CASE SUMMARY In this study,we introduce a multimodal AI system that successfully identified and delineated a small and flat carcinoma during esophagogastroduodenoscopy,highlighting its potential for early detection of malignancies.The lesion was confirmed as high-grade squamous intraepithelial neoplasia,with pathology results supporting the AI system’s accuracy.The multimodal AI system offers an integrated solution that provides real-time,accurate diagnostic information directly within the endoscopic device interface,allowing for single-monitor use without disrupting endoscopist’s workflow.CONCLUSION This work underscores the transformative potential of AI to enhance endoscopic diagnosis by enabling earlier,more accurate interventions. 展开更多
关键词 artificial intelligence Multimodal artificial intelligence system Esophageal squamous cell carcinoma High-grade intraepithelial neoplasia Case report
下载PDF
Artificial intelligence-driven strategies for managing renal and urinary complications in inflammatory bowel disease
13
作者 Ya-Xiong Guo Xiong Yan +2 位作者 Xu-Chang Liu Yu-Xiang Liu Chun Liu 《World Journal of Nephrology》 2025年第1期6-12,共7页
In this editorial,we discuss the article by Singh et al published in World Journal of Nephrology,stating the need for timely adjustments in inflammatory bowel disease(IBD)patients'long-term management plans.IBD is... In this editorial,we discuss the article by Singh et al published in World Journal of Nephrology,stating the need for timely adjustments in inflammatory bowel disease(IBD)patients'long-term management plans.IBD is chronic and lifelong,with recurrence and remission cycles,including ulcerative colitis and Crohn's disease.It's exact etiology is unknown but likely multifactorial.Related to gut flora and immune issues.Besides intestinal symptoms,IBD can also affect various extrain-testinal manifestations such as those involving the skin,joints,eyes and urinary system.The anatomical proximity of urinary system waste disposal to that of the alimentary canal makes early detection and the differentiation of such symptoms very difficult.Various studies show that IBD and it's first-line drugs have nephro-toxicity,impacting the patients'life quality.Existing guidelines give very few references for kidney lesion monitoring.Singh et al's plan aims to improve treatment management for IBD patients with glomerular filtration rate decline,specifically those at risk.Most of IBD patients are young and they need lifelong therapy.So early therapy cessation,taking into account drug side effects,can be helpful.Artificial intelligence-driven diagnosis and treatment has a big potential for management improvements in IBD and other chronic diseases. 展开更多
关键词 Inflammatory bowel disease Renal complications artificial intelligence Long-term management NEPHROTOXICITY
下载PDF
Predictability Study of Weather and Climate Events Related to Artificial Intelligence Models
14
作者 Mu MU Bo QIN Guokun DAI 《Advances in Atmospheric Sciences》 2025年第1期1-8,共8页
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an... Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences. 展开更多
关键词 PREDICTABILITY artificial intelligence models simulation and forecasting nonlinear optimization cognition–observation–model paradigm
下载PDF
Artificial sensory neurons and their applications
15
作者 Jiale Shao Hongwei Ying +6 位作者 Peihong Cheng Lingxiang Hu Xianhua Wei Zongxiao Li Huanming Lu Zhizhen Ye Fei Zhuge 《Journal of Semiconductors》 2025年第1期108-128,共21页
With the rapid development of artificial intelligence(AI)technology,the demand for high-performance and energyefficient computing is increasingly growing.The limitations of the traditional von Neumann computing archit... With the rapid development of artificial intelligence(AI)technology,the demand for high-performance and energyefficient computing is increasingly growing.The limitations of the traditional von Neumann computing architecture have prompted researchers to explore neuromorphic computing as a solution.Neuromorphic computing mimics the working principles of the human brain,characterized by high efficiency,low energy consumption,and strong fault tolerance,providing a hardware foundation for the development of new generation AI technology.Artificial neurons and synapses are the two core components of neuromorphic computing systems.Artificial perception is a crucial aspect of neuromorphic computing,where artificial sensory neurons play an irreplaceable role thus becoming a frontier and hot topic of research.This work reviews recent advances in artificial sensory neurons and their applications.First,biological sensory neurons are briefly described.Then,different types of artificial neurons,such as transistor neurons and memristive neurons,are discussed in detail,focusing on their device structures and working mechanisms.Next,the research progress of artificial sensory neurons and their applications in artificial perception systems is systematically elaborated,covering various sensory types,including vision,touch,hearing,taste,and smell.Finally,challenges faced by artificial sensory neurons at both device and system levels are summarized. 展开更多
关键词 artificial sensory neurons artificial perception systems neuromorphic computing artificial intelligence
下载PDF
Intelligent Manufacturing for the Process Industry Driven by Industrial Artificial Intelligence 被引量:20
16
作者 Tao Yang Xinlei Yi +2 位作者 Shaowen Lu Karl HJohansson Tianyou Chai 《Engineering》 SCIE EI 2021年第9期1224-1230,共7页
Based on the analysis of the characteristics and operation status of the process industry,as well as the development of the global intelligent manufacturing industry,a new mode of intelligent manufacturing for the pro... Based on the analysis of the characteristics and operation status of the process industry,as well as the development of the global intelligent manufacturing industry,a new mode of intelligent manufacturing for the process industry,namely,deep integration of industrial artificial intelligence and the Industrial Internet with the process industry,is proposed.This paper analyzes the development status of the existing three-tier structure of the process industry,which consists of the enterprise resource planning,the manufacturing execution system,and the process control system,and examines the decision-making,control,and operation management adopted by process enterprises.Based on this analysis,it then describes the meaning of an intelligent manufacturing framework and presents a vision of an intelligent optimal decision-making system based on human–machine cooperation and an intelligent autonomous control system.Finally,this paper analyzes the scientific challenges and key technologies that are crucial for the successful deployment of intelligent manufacturing in the process industry. 展开更多
关键词 Industrial artificial intelligence Industrial Internet intelligent manufacturing Process industry
下载PDF
A novel artificial intelligent model for predicting air overpressure using brain inspired emotional neural network 被引量:10
17
作者 Victor Amoako Temeng Yao Yevenyo Ziggah Clement Kweku Arthur 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第5期683-689,共7页
Blasting is the live wire of mining and its operations,with air overpressure(AOp)recognised as an end product of blasting.AOp is known to be one of the most important environmental hazards of mining.Further research i... Blasting is the live wire of mining and its operations,with air overpressure(AOp)recognised as an end product of blasting.AOp is known to be one of the most important environmental hazards of mining.Further research in this area of mining is required to help improve on safety of the working environment.Review of previous studies has shown that many empirical and artificial intelligence(AI)methods have been proposed as a forecasting model.As an alternative to the previous methods,this study proposes a new class of advanced artificial neural network known as brain inspired emotional neural network(BIENN)to predict AOp.The proposed BI-ENN approach is compared with two classical AOp predictors(generalised predictor and McKenzie formula)and three established AI methods of backpropagation neural network(BPNN),group method of data handling(GMDH),and support vector machine(SVM).From the analysis of the results,BI-ENN is the best by achieving the least RMSE,MAPE,NRMSE and highest R,VAF and PI values of 1.0941,0.8339%,0.1243%,0.8249,68.0512%and 1.2367 respectively and thus can be used for monitoring and controlling AOp. 展开更多
关键词 Air overpressure artificial intelligence Emotional neural network BLASTING MINING
下载PDF
Rock thin-section analysis and identification based on artificial intelligent technique 被引量:8
18
作者 He Liua Yi-Li Ren +10 位作者 Xin Li Yan-Xu Hu Jian-Ping Wu Bin Li Lu Luo Zhi Tao Xi Liu Jia Liang Yun-Ying Zhang Xiao-Yu An Wen-Kai Fang 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1605-1621,共17页
Rock thin-section identification is an indispensable geological exploration tool for understanding and recognizing the composition of the earth.It is also an important evaluation method for oil and gas exploration and... Rock thin-section identification is an indispensable geological exploration tool for understanding and recognizing the composition of the earth.It is also an important evaluation method for oil and gas exploration and development.It can be used to identify the petrological characteristics of reservoirs,determine the type of diagenesis,and distinguish the characteristics of reservoir space and pore structure.It is necessary to understand the physical properties and sedimentary environment of the reservoir,obtain the relevant parameters of the reservoir,formulate the oil and gas development plan,and reserve calculation.The traditional thin-section identification method has a history of more than one hundred years,which mainly depends on the geological experts'visual observation with the optical microscope,and is bothered by the problems of strong subjectivity,high dependence on experience,heavy workload,long identification cycle,and incapability to achieve complete and accurate quantification.In this paper,the models of particle segmentation,mineralogy identification,and pore type intelligent identification are constructed by using deep learning,computer vision,and other technologies,and the intelligent thinsection identification is realized.This paper overcomes the problem of multi-target recognition in the image sequence,constructs a fine-grained classification network under the multi-mode and multi-light source,and proposes a modeling scheme of data annotation while building models,forming a scientific,quantitative and efficient slice identification method.The experimental results and practical application results show that the thin-section intelligent identification technology proposed in this paper does not only greatly improves the identification efficiency,but also realizes the intuitive,accurate and quantitative identification results,which is a subversive innovation and change to the traditional thin-section identification practice. 展开更多
关键词 Thin-section identification artificial intelligence Deep learning Computer vision Sedimentary reservoir
下载PDF
Artificial Intelligence to Diagnose Tibial Plateau Fractures: An Intelligent Assistant for Orthopedic Physicians 被引量:2
19
作者 Peng-ran LIU Jia-yao ZHANG +8 位作者 Ming-di XUE Yu-yu DUAN Jia-lang HU Song-xiang LIU Yi XIE Hong-lin WANG Jun-wen WANG Tong-tong HUO Zhe-wei YE 《Current Medical Science》 SCIE CAS 2021年第6期1158-1164,共7页
Objective:To explore a new artificial intelligence(AI)-aided method to assist the clinical diagnosis of tibial plateau fractures(TPFs)and further measure its validity and feasibility.Methods:A total of 542 X-rays of T... Objective:To explore a new artificial intelligence(AI)-aided method to assist the clinical diagnosis of tibial plateau fractures(TPFs)and further measure its validity and feasibility.Methods:A total of 542 X-rays of TPFs were collected as a reference database.An AI algorithm(RetinaNet)was trained to analyze and detect TPF on the X-rays.The ability of the AI algorithm was determined by indexes such as detection accuracy and time taken for analysis.The algorithm performance was also compared with orthopedic physicians.Results:The AI algorithm showed a detection accuracy of 0.91 for the identification of TPF,which was similar to the performance of orthopedic physicians(0.92±0.03).The average time spent for analysis of the AI was 0.56 s,which was 16 times faster than human performance(8.44±3.26 s).Conclusion:The AI algorithm is a valid and efficient method for the clinical diagnosis of TPF.It can be a useful assistant for orthopedic physicians,which largely promotes clinical workflow and further guarantees the health and security of patients. 展开更多
关键词 artificial intelligence tibial plateau FRACTURE DIAGNOSIS
下载PDF
Unmanned aerial vehicle based intelligent triage system in mass-casualty incidents using 5G and artificial intelligence 被引量:1
20
作者 Jiafa Lu Xin Wang +7 位作者 Linghao Chen Xuedong Sun Rui Li Wanjing Zhong Yajing Fu Le Yang Weixiang Liu Wei Han 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2023年第4期273-279,共7页
BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly... BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly depend on the UAV operator’s experience.We used UAVs and artificial intelligence(AI)to provide a new technique for the triage of MCIs and more efficient solutions for emergency rescue.METHODS:This was a preliminary experimental study.We developed an intelligent triage system based on two AI algorithms,namely OpenPose and YOLO.Volunteers were recruited to simulate the MCI scene and triage,combined with UAV and Fifth Generation(5G)Mobile Communication Technology real-time transmission technique,to achieve triage in the simulated MCI scene.RESULTS:Seven postures were designed and recognized to achieve brief but meaningful triage in MCIs.Eight volunteers participated in the MCI simulation scenario.The results of simulation scenarios showed that the proposed method was feasible in tasks of triage for MCIs.CONCLUSION:The proposed technique may provide an alternative technique for the triage of MCIs and is an innovative method in emergency rescue. 展开更多
关键词 Mass-casualty incidents Emergency medical service Unmanned aerial vehicle Fifth Generation Mobile Communication Technology artificial intelligence
下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部