In a semi-discretized Euler-Bernoulli beam equa- tion, the non-nearest neighboring interaction and large span of temporal scales for wave propagations pose challenges to the effectiveness and stability for artificial ...In a semi-discretized Euler-Bernoulli beam equa- tion, the non-nearest neighboring interaction and large span of temporal scales for wave propagations pose challenges to the effectiveness and stability for artificial boundary treat- ments. With the discrete equation regarded as an atomic lattice with a three-atom potential, two accurate artificial boundary conditions are first derived here. Reflection co- efficient and numerical tests illustrate the capability of the proposed methods. In particular, the time history treatment gives an exact boundary condition, yet with sensitivity to nu- merical implementations. The ALEX (almost EXact) bound- ary condition is numerically more effective.展开更多
基金supported by the National Natural Science Foundation of China(11272009)National Basic Research Program of China(2010CB731503)U.S. National Science Foundation(0900498)
文摘In a semi-discretized Euler-Bernoulli beam equa- tion, the non-nearest neighboring interaction and large span of temporal scales for wave propagations pose challenges to the effectiveness and stability for artificial boundary treat- ments. With the discrete equation regarded as an atomic lattice with a three-atom potential, two accurate artificial boundary conditions are first derived here. Reflection co- efficient and numerical tests illustrate the capability of the proposed methods. In particular, the time history treatment gives an exact boundary condition, yet with sensitivity to nu- merical implementations. The ALEX (almost EXact) bound- ary condition is numerically more effective.