Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class unifo...Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing.展开更多
Flying Ad hoc Network(FANET)has drawn significant consideration due to its rapid advancements and extensive use in civil applications.However,the characteristics of FANET including high mobility,limited resources,and ...Flying Ad hoc Network(FANET)has drawn significant consideration due to its rapid advancements and extensive use in civil applications.However,the characteristics of FANET including high mobility,limited resources,and distributed nature,have posed a new challenge to develop a secure and ef-ficient routing scheme for FANET.To overcome these challenges,this paper proposes a novel cluster based secure routing scheme,which aims to solve the routing and data security problem of FANET.In this scheme,the optimal cluster head selection is based on residual energy,online time,reputation,blockchain transactions,mobility,and connectivity by using Improved Artificial Bee Colony Optimization(IABC).The proposed IABC utilizes two different search equations for employee bee and onlooker bee to enhance convergence rate and exploitation abilities.Further,a lightweight blockchain consensus algorithm,AI-Proof of Witness Consensus Algorithm(AI-PoWCA)is proposed,which utilizes the optimal cluster head for mining.In AI-PoWCA,the concept of the witness for block verification is also involved to make the proposed scheme resource efficient and highly resilient against 51%attack.Simulation results demonstrate that the proposed scheme outperforms its counterparts and achieves up to 90%packet delivery ratio,lowest end-to-end delay,highest throughput,resilience against security attacks,and superior in block processing time.展开更多
Based on the uncertainty theory, this paper is devoted to the redundancy allocation problem in repairable parallel-series systems with uncertain factors, where the failure rate, repair rate and other relative coeffici...Based on the uncertainty theory, this paper is devoted to the redundancy allocation problem in repairable parallel-series systems with uncertain factors, where the failure rate, repair rate and other relative coefficients involved are considered as uncertain variables. The availability of the system and the corresponding designing cost are considered as two optimization objectives. A crisp multiobjective optimization formulation is presented on the basis of uncertainty theory to solve this resultant problem. For solving this problem efficiently, a new multiobjective artificial bee colony algorithm is proposed to search the Pareto efficient set, which introduces rank value and crowding distance in the greedy selection strategy, applies fast non-dominated sort procedure in the exploitation search and inserts tournament selection in the onlooker bee phase. It shows that the proposed algorithm outperforms NSGA-II greatly and can solve multiobjective redundancy allocation problem efficiently. Finally, a numerical example is provided to illustrate this approach.展开更多
As different artificial intelligence(AI)techniques continue to evolve,power systems are undergoing significant technological changes with the primary goal of reducing computational time,decreasing utility and consumer...As different artificial intelligence(AI)techniques continue to evolve,power systems are undergoing significant technological changes with the primary goal of reducing computational time,decreasing utility and consumer costs and ensuring the reliable operation of an electrical power system.AI techniques compute large amounts of data at a faster speed than numerical optimization methods with higher processing speeds.With these features,AI techniques can further automate and increase the performance of power sys-tems.This paper presents a comprehensive overview of diverse AI techniques that can be applied in power system operation,control and planning,aiming to facilitate their various applications.We explained how AI can be used to resolve system frequency changes,maintain the voltage profile to minimize transmission losses,reduce the fault rate and minimize reactive current in distributed sys-tems to increase the power factor and improve the voltage profile.展开更多
基金Supported by the CRSRI Open Research Program(CKWV2013225/KY)the Priority Academic Program Development of Jiangsu Higher Education Institution+2 种基金the Open Project Foundation of Key Laboratory of the Yellow River Sediment of Ministry of Water Resource(2014006)the State Key Lab of Urban Water Resource and Environment(HIT)(ES201409)the Open Project Program of State Key Laboratory of Food Science and Technology,Jiangnan University(SKLF-KF-201310)
文摘Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing.
基金This paper is supported in part by the National Natural Science Foundation of China(61701322)the Young and Middle-aged Science and Technology Innovation Talent Support Plan of Shenyang(RC190026)+1 种基金the Natural Science Foundation of Liaoning Province(2020-MS-237)the Liaoning Provincial Department of Education Science Foundation(JYT19052).
文摘Flying Ad hoc Network(FANET)has drawn significant consideration due to its rapid advancements and extensive use in civil applications.However,the characteristics of FANET including high mobility,limited resources,and distributed nature,have posed a new challenge to develop a secure and ef-ficient routing scheme for FANET.To overcome these challenges,this paper proposes a novel cluster based secure routing scheme,which aims to solve the routing and data security problem of FANET.In this scheme,the optimal cluster head selection is based on residual energy,online time,reputation,blockchain transactions,mobility,and connectivity by using Improved Artificial Bee Colony Optimization(IABC).The proposed IABC utilizes two different search equations for employee bee and onlooker bee to enhance convergence rate and exploitation abilities.Further,a lightweight blockchain consensus algorithm,AI-Proof of Witness Consensus Algorithm(AI-PoWCA)is proposed,which utilizes the optimal cluster head for mining.In AI-PoWCA,the concept of the witness for block verification is also involved to make the proposed scheme resource efficient and highly resilient against 51%attack.Simulation results demonstrate that the proposed scheme outperforms its counterparts and achieves up to 90%packet delivery ratio,lowest end-to-end delay,highest throughput,resilience against security attacks,and superior in block processing time.
基金supported by National Natural Science Foundation of China (No. 71171199)Natural Science Foundation of Shaanxi Province of China (No. 2013JM1003)
文摘Based on the uncertainty theory, this paper is devoted to the redundancy allocation problem in repairable parallel-series systems with uncertain factors, where the failure rate, repair rate and other relative coefficients involved are considered as uncertain variables. The availability of the system and the corresponding designing cost are considered as two optimization objectives. A crisp multiobjective optimization formulation is presented on the basis of uncertainty theory to solve this resultant problem. For solving this problem efficiently, a new multiobjective artificial bee colony algorithm is proposed to search the Pareto efficient set, which introduces rank value and crowding distance in the greedy selection strategy, applies fast non-dominated sort procedure in the exploitation search and inserts tournament selection in the onlooker bee phase. It shows that the proposed algorithm outperforms NSGA-II greatly and can solve multiobjective redundancy allocation problem efficiently. Finally, a numerical example is provided to illustrate this approach.
文摘As different artificial intelligence(AI)techniques continue to evolve,power systems are undergoing significant technological changes with the primary goal of reducing computational time,decreasing utility and consumer costs and ensuring the reliable operation of an electrical power system.AI techniques compute large amounts of data at a faster speed than numerical optimization methods with higher processing speeds.With these features,AI techniques can further automate and increase the performance of power sys-tems.This paper presents a comprehensive overview of diverse AI techniques that can be applied in power system operation,control and planning,aiming to facilitate their various applications.We explained how AI can be used to resolve system frequency changes,maintain the voltage profile to minimize transmission losses,reduce the fault rate and minimize reactive current in distributed sys-tems to increase the power factor and improve the voltage profile.