Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class unifo...Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing.展开更多
Based on the uncertainty theory, this paper is devoted to the redundancy allocation problem in repairable parallel-series systems with uncertain factors, where the failure rate, repair rate and other relative coeffici...Based on the uncertainty theory, this paper is devoted to the redundancy allocation problem in repairable parallel-series systems with uncertain factors, where the failure rate, repair rate and other relative coefficients involved are considered as uncertain variables. The availability of the system and the corresponding designing cost are considered as two optimization objectives. A crisp multiobjective optimization formulation is presented on the basis of uncertainty theory to solve this resultant problem. For solving this problem efficiently, a new multiobjective artificial bee colony algorithm is proposed to search the Pareto efficient set, which introduces rank value and crowding distance in the greedy selection strategy, applies fast non-dominated sort procedure in the exploitation search and inserts tournament selection in the onlooker bee phase. It shows that the proposed algorithm outperforms NSGA-II greatly and can solve multiobjective redundancy allocation problem efficiently. Finally, a numerical example is provided to illustrate this approach.展开更多
基金Supported by the CRSRI Open Research Program(CKWV2013225/KY)the Priority Academic Program Development of Jiangsu Higher Education Institution+2 种基金the Open Project Foundation of Key Laboratory of the Yellow River Sediment of Ministry of Water Resource(2014006)the State Key Lab of Urban Water Resource and Environment(HIT)(ES201409)the Open Project Program of State Key Laboratory of Food Science and Technology,Jiangnan University(SKLF-KF-201310)
文摘Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing.
基金supported by National Natural Science Foundation of China (No. 71171199)Natural Science Foundation of Shaanxi Province of China (No. 2013JM1003)
文摘Based on the uncertainty theory, this paper is devoted to the redundancy allocation problem in repairable parallel-series systems with uncertain factors, where the failure rate, repair rate and other relative coefficients involved are considered as uncertain variables. The availability of the system and the corresponding designing cost are considered as two optimization objectives. A crisp multiobjective optimization formulation is presented on the basis of uncertainty theory to solve this resultant problem. For solving this problem efficiently, a new multiobjective artificial bee colony algorithm is proposed to search the Pareto efficient set, which introduces rank value and crowding distance in the greedy selection strategy, applies fast non-dominated sort procedure in the exploitation search and inserts tournament selection in the onlooker bee phase. It shows that the proposed algorithm outperforms NSGA-II greatly and can solve multiobjective redundancy allocation problem efficiently. Finally, a numerical example is provided to illustrate this approach.