期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Artificial ground freezing of underground mines in cold regions using thermosyphons with air insulation
1
作者 Ahmad F.Zueter Mohammad Zolfagharroshan +1 位作者 Navid Bahrani Agus P.Sasmito 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期643-654,共12页
Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl... Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF. 展开更多
关键词 artificial ground freezing Underground mining Sustainable mining THERMOSYPHON Air insulation Cold regions
下载PDF
Thermal performance of cast-in-place piles with artificial ground freezing in permafrost regions
2
作者 WANG Xinbin CHEN Kun +3 位作者 YU Qihao GUO Lei YOU Yanhui JIN Mingyang 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1307-1328,共22页
During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing cap... During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost. 展开更多
关键词 Permafrost engineering Cast-in-place pile artificial ground freezing Thermal performance.
下载PDF
Coupled thermo-hydro-mechanical modeling of frost heave and water migration during artificial freezing of soils for mineshaft sinking 被引量:1
3
作者 M.Zhelnin A.Kostina +3 位作者 A.Prokhorov O.Plekhov M.Semin L.Levin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期537-559,共23页
Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the pr... Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the present paper,a thermo-hydro-mechanical(THM)model for freezing of water-saturated soil is proposed to study the effects of frost heave and water migration in frozen soils on the formation of a frozen wall and subsequent excavation activity for sinking a vertical shaft.The governing equations of the model are formulated relative to porosity,temperature,and displacement which are considered as primary variables.The relationship between temperature,pore water,and ice pressure in frozen soil is established by the Clausius-Clapeyron equation,whereas the interaction between the stress-strain behavior and changes in porosity and pore pressure is described with the poromechanics theory.Moreover,constitutive relations for additional mechanical deformation are incorporated to describe volumetric expansion of soil during freezing as well as creep strain of soil in the frozen state.The ability of the proposed model to capture the frost heave of frozen soil is demonstrated by a comparison between numerical results and experimental data given by a one-sided freezing test.Also to validate the model in other freezing conditions,a radial freezing experiment is performed.After the validation procedure,the model is applied to numerical simulation of artificial freezing of silt and sand layers for shaft sinking at Petrikov potash mine in Belarus.Comparison of calculated temperature with thermal monitoring data during active freezing stage is presented.Numerical analysis of deformation of unsupported sidewall of a shaft inside the frozen wall is conducted to account for the change in natural stress-strain state of soil layers induced by artificial freezing. 展开更多
关键词 artificial ground freezing(AGF) Thermo-hydro-mechanical(THM)modeling Frost effects Frozen wall Shaft sinking
下载PDF
Artificially frozen ground and related engineering technology in Japan
4
作者 Satoshi Akagawa 《Research in Cold and Arid Regions》 CSCD 2021年第2期77-86,共10页
Since the 1970's, frozen ground has been developing near the Tokyo Bay area around liquefied natural gas(LNG) inground storage tanks. For disaster prevention purposes, the tanks are constructed below the ground su... Since the 1970's, frozen ground has been developing near the Tokyo Bay area around liquefied natural gas(LNG) inground storage tanks. For disaster prevention purposes, the tanks are constructed below the ground surface. Since the temperature of the liquid stored in the tanks is -162℃ the soil surrounding the tanks freezes. Since this frozen ground has existed for almost half a century, we have permafrost near Tokyo. The development of artificial frozen ground may cause frost heaving, resulting in frost heave forces that may cause structural damage of adjacent LNG in-ground storage tanks.Therefore, the demand for frozen ground engineering increased and consequently we now have advanced technology in this area. Fortunately, we use this engineering technology and artificial ground freezing for civil engineering, especially in big and crowded cities like Tokyo. This paper provides a summary of the testing apparatus, test methods, and assessment methods for frost heaving. 展开更多
关键词 artificial ground freezing frost heave frozen ground engineering
下载PDF
A Frost Heaving Prediction Approach for Ground Uplift Simulation Due to Freeze-Sealing Pipe Roof Method
5
作者 Shengjun Deng Haolin Chen +3 位作者 Xiaonan Gong Jiajin Zhou Xiangdong Hu Gang Jiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第7期251-266,共16页
Freeze-sealing pipe roof method is applied in the Gongbei tunnel,which causes the ground surface uplift induced by frost heave.A frost heaving prediction approach based on the coefficient of cold expansion is proposed... Freeze-sealing pipe roof method is applied in the Gongbei tunnel,which causes the ground surface uplift induced by frost heave.A frost heaving prediction approach based on the coefficient of cold expansion is proposed to simulate the ground deformation of the Gongbei tunnel.The coefficient of cold expansion in the model and the frost heaving rate from the frost heave test under the hydration condition can achieve a good correspondence making the calculation result closer to the actual engineering.The ground surface uplift along the lateral and longitudinal direction are respectively analyzed and compared with the field measured data to validate the model.The results show that a good agreement between the frost heaving prediction model and the field measured data verifies the rationality and applicability of the proposed model.The maximum uplift of the Gongbei tunnel appears at the center of the model,gradually decreasing along with the lateral and longitudinal directions.The curve in the lateral direction presents a normal distribution due to the influence of the constraint of two sides,while the one along the lateral direction shapes like a parabola with the opening downward due to the temperature field distribution.The model provides a reference for frost heaving engineering calculation. 展开更多
关键词 Freeze-sealing pipe roof method artificial ground freezing method tunnel construction frost heave temperature field
下载PDF
Study on the freezing–thawing deformation of consolidated soils under high pressure
6
作者 DaYan Wang Wei Ma lele lei 《Research in Cold and Arid Regions》 CSCD 2017年第1期29-37,共9页
The freezing-thawing deformation behaviors of consolidated soils under high pressure have been investigated in a high-pressure-low-temperature (HPLT) Kq consolidation apparatus with a small strain sensor. The tests... The freezing-thawing deformation behaviors of consolidated soils under high pressure have been investigated in a high-pressure-low-temperature (HPLT) Kq consolidation apparatus with a small strain sensor. The tests cover a variety of frozen soil temperatures ranging from -2℃ to -10 ℃, and a series of applied pressures ranging from 1 MPa to 5 MPa. The test results show that, for the consolidated soils under high pressure, their freezing-thawing deformation was caused by the realignment and the deformation of soil particles, the phase change of water, and the water redistribution in the soil. As for the deformation produced by thermal expansion and contraction,it is about 0.04-0.05 mm, accounting for only about 7%~9% of the total deformation. Taking the freezing-thawing deformation produced by temperature disturbance as a creep deformation, the creep models of the developing soil deformation will be determined by the soil's final temperature, i.e., the desired temperature. For the soils under a desired temperature between -2℃ and -5℃, the freezing-thawing de-formation develops according to a non-attenuation creep model; but for the soils with a desired temperature lower than -5℃, a full attenuation creep model is followed. The applied pressure and soil type also have a significant influence on the maximum freezing deformation. Generally, the greater the desired pressure applied, the less the maximum deformation is; and the loess freezing deformation is larger than that of sand. 展开更多
关键词 freezing-thawing deformation artificial ground freezing K0 consolidation high pressure
下载PDF
Average temperature calculation for straight single-row-piped frozen soil wall 被引量:7
7
作者 XiangDong Hu SiYuan She RuiZhi Yu 《Research in Cold and Arid Regions》 2011年第2期124-131,共8页
The average temperature of frozen soil wall is an essential parameter in the process of design, construction, and safety manage- ment of artificial ground freezing engineering. It is the basis of calculating frozen s... The average temperature of frozen soil wall is an essential parameter in the process of design, construction, and safety manage- ment of artificial ground freezing engineering. It is the basis of calculating frozen soil's mechanical parameters, fiarther prediction of bearing capacity and, ultimately, safety evaluation of the frozen soil wall. Regarding the average temperature of sin- gle-row-piped frozen soil wall, this paper summarizes several current calculation methods and their shortcomings. Furthermore, on the basis of Bakholdin's analytical solution for the temperature field under straight single-row-piped freezing, two new calcula- tion models, namely, the equivalent trapezoid model and the equivalent triangle model, are proposed. These two approaches are used to calculate the average temperature of a certain cross section which indicates the condition of the whole frozen soil wall. Considering the possible parameter range according to the freezing pipe layout that might be applied in actual construction, this paper compares the average temperatures of frozen soil walls obtained by the equivalent trapezoid method and the equivalent tri- angle method with that obtained by numerical integration of Bakholdin's analytical solution. The results show that the discrepancies are extremely small and these two new approaches are better than currently prevailing methods. However, the equivalent triangle method boasts higher accuracy and a simpler formula compared with the equivalent trapezoid method. 展开更多
关键词 artificial ground freezing single-row-piped freezing frozen soil wall average temperature equivalent trapezoid method equivalent triangle method Bakholdin's solution
下载PDF
Influence of freeze tube deviation on the development of frozen wall during long cross-passage construction 被引量:2
8
作者 JunHao Chen JianLin Wang +2 位作者 LeXiao Wang Han Li MeiLin Chen 《Research in Cold and Arid Regions》 CSCD 2022年第4期250-257,共8页
This paper investigates the influence of the deviation in freeze pipe installation on the development of the frozen wall in long cross passages by numerical simulation with ANSYS software.The study case is from the ar... This paper investigates the influence of the deviation in freeze pipe installation on the development of the frozen wall in long cross passages by numerical simulation with ANSYS software.The study case is from the artificial ground freezing project along the Fuzhou Metro Line 2 between Ziyang Station and Wuliting Station.Two freezepipe configurations,i.e.,one with perfectly aligned pipes without any deviation from design and another with randomly distributed deviation,are included for comparison.The effect of the random deviation in the freeze pipes on frozen wall interconnection time,the thickness of the frozen wall and the development of the temperature field is explored.For the characteristic section of the numerical model at a depth of 25 m,it is found that the frozen wall interconnection time under the random deviation case and no deviation case is 24 days and 18 days,respectively.The difference in the thickness of the thinnest frozen wall segment between the random deviation and no deviation cases is the largest in the early freezing stage(up to 0.75 m),which decreases with time to 0.31 m in the late freezing stage.The effects of random deviation are more significant in the early freezing stage and diminish as the freezing time increases. 展开更多
关键词 Long cross passages artificial ground freezing Random deflection Numerical simulation
下载PDF
Revision of thickness design of cylindrical frozen walls considering frost heave
9
作者 XiaoMin Zhou AnBao Wang HuaDong Guan 《Research in Cold and Arid Regions》 CSCD 2013年第5期591-595,共5页
This paper outlines development of the thickness design of cylindrical frozen walls in artificial ground freezing (AFG). A plain strain mechanical model coupled with infinite surrounding soil and rock takes into acc... This paper outlines development of the thickness design of cylindrical frozen walls in artificial ground freezing (AFG). A plain strain mechanical model coupled with infinite surrounding soil and rock takes into account the frost heave ratio to investigate the influence of frost heave on the thickness design of frozen wall, and superposition method is used to solve the complicated problem of frozen wall swelling. A revised formula referred to as "Baoshen" formula has been proposed. This formula provides a convenient analytic solution for any AGF problem involving not only frost heave but also the action of surrounding soil. 展开更多
关键词 artificial ground freezing frost heave frozen wall
下载PDF
Analytical Solution to Steady-State Temperature Field of Two Freezing Pipes with Diferent Temperatures 被引量:1
10
作者 胡向东 张洛瑜 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第6期706-711,共6页
The existing analytical formulas to calculate the temperature field distribution of artificial frozen soil walls are all based on the conditions that the surface temperatures of all freezing pipes are equivalent. In t... The existing analytical formulas to calculate the temperature field distribution of artificial frozen soil walls are all based on the conditions that the surface temperatures of all freezing pipes are equivalent. In this paper, analytical solution of steady state temperature field of two freezing pipes with diferent temperatures is deduced based on thermal potential superposition method. The correctness of the analytical formulas is verified by comparing the temperature field distributions of the analytical formulas and those of the numerical simulations in the same conditions. And discussions are made to analyze the influence of some parameters on temperature field distribution of this condition. 展开更多
关键词 artificial ground freezing(AGF) freezing-pipe temperature temperature filed steady state analyt-ical solution thermal potential
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部