A new artificial immune algorithm (AIA) simulating the biological immune network system with selfadjustment function is proposed in this paper. AIA is based on the modified immune network model in which two methods ...A new artificial immune algorithm (AIA) simulating the biological immune network system with selfadjustment function is proposed in this paper. AIA is based on the modified immune network model in which two methods of affinity measure evaluated are used, controlling the antibody diversity and the speed of convergence separately. The model proposed focuses on a systemic view of the immune system and takes into account cell-cell interactions denoted by antibody affinity. The antibody concentration defined in the immune network model is responsible directly for its activity in the immune system. The model introduces not only a term describing the network dynamics, but also proposes an independent term to simulate the dynamics of the antigen population. The antibodies' evolutionary processes are controlled in the algorithms by utilizing the basic properties of the immune network. Computational amount and effect is a pair of contradictions. In terms of this problem, the AIA regulating the parameters easily attains a compromise between them. At the same time, AIA can prevent premature convergence at the cost of a heavy computational amount (the iterative times). Simulation illustrates that AIA is adapted to solve optimization problems, emphasizing muhimodal optimization.展开更多
A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,mu...A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,multi-scale variation and gradient-based diversity was modeled.Because the immune cloning operator was derived from a stimulation and suppression effect between antibodies and antigens,a sigmoid model that can clearly describe clonal proliferation was proposed.In addition,with the introduction of multiple populations and multi-scale variation,the algorithm can well maintain the population diversity during the dynamic searching process.Unlike traditional artificial immune algorithms,which require randomly generated cells added to the current population to explore its fitness landscape,AIDE uses a gradient-based diversity operator to speed up the optimization in the dynamic environments.Several reported algorithms were compared with AIDE by using Moving Peaks Benchmarks.Preliminary experiments show that AIDE can maintain high population diversity during the search process,simultaneously can speed up the optimization.Thus,AIDE is useful for the optimization of dynamic environments.展开更多
A computing model employing the immune and genetic algorithm (IGA) for the optimization of part design is presented. This model operates on a population of points in search space simultaneously, not on just one point....A computing model employing the immune and genetic algorithm (IGA) for the optimization of part design is presented. This model operates on a population of points in search space simultaneously, not on just one point. It uses the objective function itself, not derivative or any other additional information and guarantees the fast convergence toward the global optimum. This method avoids some weak points in genetic algorithm, such as inefficient to some local searching problems and its convergence is too early. Based on this model, an optimal design support system (IGBODS) is developed.IGBODS has been used in practice and the result shows that this model has great advantage than traditional one and promises good application in optimal design.展开更多
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici...Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem.展开更多
In artificial immune optimization algorithm, the mutation of immune cells has been considered as the key operator that determines the algorithm performance. Traditional immune optimization algorithms have used a singl...In artificial immune optimization algorithm, the mutation of immune cells has been considered as the key operator that determines the algorithm performance. Traditional immune optimization algorithms have used a single mutation operator, typically a Gaussian. Using a variety of mutation operators that can be combined during evolution to generate different probability density function could hold the potential for producing better solutions with less computational effort. In view of this, a linear combination mutation operator of Gaussian and Cauchy mutation is presented in this paper, and a novel clonal selection optimization method based on clonal selection principle is proposed also. The simulation results show the combining mutation strategy can obtain the same performance as the best of pure strategies or even better in some cases.展开更多
Negative selection algorithm(NSA)is one of the classic artificial immune algorithm widely used in anomaly detection.However,there are still unsolved shortcomings of NSA that limit its further applications.For example,...Negative selection algorithm(NSA)is one of the classic artificial immune algorithm widely used in anomaly detection.However,there are still unsolved shortcomings of NSA that limit its further applications.For example,the nonselfdetector generation efficiency is low;a large number of nonselfdetector is needed for precise detection;low detection rate with various application data sets.Aiming at those problems,a novel radius adaptive based on center-optimized hybrid detector generation algorithm(RACO-HDG)is put forward.To our best knowledge,radius adaptive based on center optimization is first time analyzed and proposed as an efficient mechanism to improve both detector generation and detection rate without significant computation complexity.RACO-HDG works efficiently in three phases.At first,a small number of self-detectors are generated,different from typical NSAs with a large number of self-sample are generated.Nonself-detectors will be generated from those initial small number of self-detectors to make hybrid detection of self-detectors and nonself-detectors possible.Secondly,without any prior knowledge of the data sets or manual setting,the nonself-detector radius threshold is self-adaptive by optimizing the nonself-detector center and the generation mechanism.In this way,the number of abnormal detectors is decreased sharply,while the coverage area of the nonself-detector is increased otherwise,leading to higher detection performances of RACOHDG.Finally,hybrid detection algorithm is proposed with both self-detectors and nonself-detectors work together to increase detection rate as expected.Abundant simulations and application results show that the proposed RACO-HDG has higher detection rate,lower false alarm rate and higher detection efficiency compared with other excellent algorithms.展开更多
将正交试验设计引入到克隆选择操作中,设计出基于正交试验的克隆选择操作(clonal selection operation based on orthogonal experiment design,简称CSO-OED),并将其加入到典型的克隆选择算法中,设计出并联式的CSO+CSO-OED(Ⅰ)算法和串...将正交试验设计引入到克隆选择操作中,设计出基于正交试验的克隆选择操作(clonal selection operation based on orthogonal experiment design,简称CSO-OED),并将其加入到典型的克隆选择算法中,设计出并联式的CSO+CSO-OED(Ⅰ)算法和串联式的CSO+CSO-OED(Ⅱ)算法.将新设计的算法用于9个经典的测试函数和6个复杂的测试函数进行对比测试,实验结果表明,CSO-OED能够有效地保持种群的多样性,避免算法不成熟收敛.CSO+CSO-OED(Ⅰ)和CSO+CSO-OED(Ⅱ)将全局搜索和局部搜索分开进行优化,对比实验表明,这种搜索策略不但能够保证算法的收敛性,还能有效地提高搜索解的精度,增强算法的鲁棒性.展开更多
在免疫多目标优化算法的基础上,引入了分布估计算法(EDA)对进化种群进行建模采样的思想,提出了一种求解复杂多目标优化问题的混合优化算法HIAEDA(hybrid immune algorithm with EDA for multi-objective optimization).HIAEDA的进化过...在免疫多目标优化算法的基础上,引入了分布估计算法(EDA)对进化种群进行建模采样的思想,提出了一种求解复杂多目标优化问题的混合优化算法HIAEDA(hybrid immune algorithm with EDA for multi-objective optimization).HIAEDA的进化过程混合了两种后代产生策略:一种是基于交叉变异的克隆选择算子,用于在父代种群周围进行局部搜索的同时开辟新的搜索区域;另一种是基于EDA的模型采样算子,用于学习多目标优化问题决策变量之间的相关性,提高算法求解复杂多目标优化问题的能力.在分析两种算子搜索行为的基础上,讨论了两者在功能上的互补性,并利用有限马尔可夫链的性质证明了HIAEDA算法的收敛性.对测试函数和实际工程问题的仿真实验结果表明,HIAEDA与NSGAII算法和基于EDA的进化多目标优化算法RM-MEDA相比,在收敛性和多样性方面均表现出明显优势,尤其是对于决策变量之间存在非线性关联的复杂多目标优化问题,优势更为突出.展开更多
文摘A new artificial immune algorithm (AIA) simulating the biological immune network system with selfadjustment function is proposed in this paper. AIA is based on the modified immune network model in which two methods of affinity measure evaluated are used, controlling the antibody diversity and the speed of convergence separately. The model proposed focuses on a systemic view of the immune system and takes into account cell-cell interactions denoted by antibody affinity. The antibody concentration defined in the immune network model is responsible directly for its activity in the immune system. The model introduces not only a term describing the network dynamics, but also proposes an independent term to simulate the dynamics of the antigen population. The antibodies' evolutionary processes are controlled in the algorithms by utilizing the basic properties of the immune network. Computational amount and effect is a pair of contradictions. In terms of this problem, the AIA regulating the parameters easily attains a compromise between them. At the same time, AIA can prevent premature convergence at the cost of a heavy computational amount (the iterative times). Simulation illustrates that AIA is adapted to solve optimization problems, emphasizing muhimodal optimization.
基金Project(60625302) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(2009CB320603) supported by the National Basic Research Program of China+5 种基金Projects(10dz1121900,10JC1403400) supported by Shanghai Key Technologies R & D ProgramProject supported by the Fundamental Research Funds for the Central Universities in ChinaProject(200802511011) supported by the New Teacher Program of Specialized Research Fund for the Doctoral Program of Higher Education in ChinaProject(Y1090548) supported by Zhejiang Provincial Natural Science Fund,ChinaProject(2011C21077) supported by Zhejiang Technology Programme,ChinaProject(2011A610173) supported by Ningbo Natural Science Fund,China
文摘A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,multi-scale variation and gradient-based diversity was modeled.Because the immune cloning operator was derived from a stimulation and suppression effect between antibodies and antigens,a sigmoid model that can clearly describe clonal proliferation was proposed.In addition,with the introduction of multiple populations and multi-scale variation,the algorithm can well maintain the population diversity during the dynamic searching process.Unlike traditional artificial immune algorithms,which require randomly generated cells added to the current population to explore its fitness landscape,AIDE uses a gradient-based diversity operator to speed up the optimization in the dynamic environments.Several reported algorithms were compared with AIDE by using Moving Peaks Benchmarks.Preliminary experiments show that AIDE can maintain high population diversity during the search process,simultaneously can speed up the optimization.Thus,AIDE is useful for the optimization of dynamic environments.
文摘A computing model employing the immune and genetic algorithm (IGA) for the optimization of part design is presented. This model operates on a population of points in search space simultaneously, not on just one point. It uses the objective function itself, not derivative or any other additional information and guarantees the fast convergence toward the global optimum. This method avoids some weak points in genetic algorithm, such as inefficient to some local searching problems and its convergence is too early. Based on this model, an optimal design support system (IGBODS) is developed.IGBODS has been used in practice and the result shows that this model has great advantage than traditional one and promises good application in optimal design.
文摘Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem.
基金This work was supported by the National Natural Science Foundation of China (No50335030)
文摘In artificial immune optimization algorithm, the mutation of immune cells has been considered as the key operator that determines the algorithm performance. Traditional immune optimization algorithms have used a single mutation operator, typically a Gaussian. Using a variety of mutation operators that can be combined during evolution to generate different probability density function could hold the potential for producing better solutions with less computational effort. In view of this, a linear combination mutation operator of Gaussian and Cauchy mutation is presented in this paper, and a novel clonal selection optimization method based on clonal selection principle is proposed also. The simulation results show the combining mutation strategy can obtain the same performance as the best of pure strategies or even better in some cases.
基金supported by the National Natural Science Foundation of China(61502423,62072406)the Natural Science Foundation of Zhejiang Provincial(LY19F020025)the Major Special Funding for“Science and Technology Innovation 2025”in Ningbo(2018B10063)。
文摘Negative selection algorithm(NSA)is one of the classic artificial immune algorithm widely used in anomaly detection.However,there are still unsolved shortcomings of NSA that limit its further applications.For example,the nonselfdetector generation efficiency is low;a large number of nonselfdetector is needed for precise detection;low detection rate with various application data sets.Aiming at those problems,a novel radius adaptive based on center-optimized hybrid detector generation algorithm(RACO-HDG)is put forward.To our best knowledge,radius adaptive based on center optimization is first time analyzed and proposed as an efficient mechanism to improve both detector generation and detection rate without significant computation complexity.RACO-HDG works efficiently in three phases.At first,a small number of self-detectors are generated,different from typical NSAs with a large number of self-sample are generated.Nonself-detectors will be generated from those initial small number of self-detectors to make hybrid detection of self-detectors and nonself-detectors possible.Secondly,without any prior knowledge of the data sets or manual setting,the nonself-detector radius threshold is self-adaptive by optimizing the nonself-detector center and the generation mechanism.In this way,the number of abnormal detectors is decreased sharply,while the coverage area of the nonself-detector is increased otherwise,leading to higher detection performances of RACOHDG.Finally,hybrid detection algorithm is proposed with both self-detectors and nonself-detectors work together to increase detection rate as expected.Abundant simulations and application results show that the proposed RACO-HDG has higher detection rate,lower false alarm rate and higher detection efficiency compared with other excellent algorithms.
文摘将正交试验设计引入到克隆选择操作中,设计出基于正交试验的克隆选择操作(clonal selection operation based on orthogonal experiment design,简称CSO-OED),并将其加入到典型的克隆选择算法中,设计出并联式的CSO+CSO-OED(Ⅰ)算法和串联式的CSO+CSO-OED(Ⅱ)算法.将新设计的算法用于9个经典的测试函数和6个复杂的测试函数进行对比测试,实验结果表明,CSO-OED能够有效地保持种群的多样性,避免算法不成熟收敛.CSO+CSO-OED(Ⅰ)和CSO+CSO-OED(Ⅱ)将全局搜索和局部搜索分开进行优化,对比实验表明,这种搜索策略不但能够保证算法的收敛性,还能有效地提高搜索解的精度,增强算法的鲁棒性.
文摘在免疫多目标优化算法的基础上,引入了分布估计算法(EDA)对进化种群进行建模采样的思想,提出了一种求解复杂多目标优化问题的混合优化算法HIAEDA(hybrid immune algorithm with EDA for multi-objective optimization).HIAEDA的进化过程混合了两种后代产生策略:一种是基于交叉变异的克隆选择算子,用于在父代种群周围进行局部搜索的同时开辟新的搜索区域;另一种是基于EDA的模型采样算子,用于学习多目标优化问题决策变量之间的相关性,提高算法求解复杂多目标优化问题的能力.在分析两种算子搜索行为的基础上,讨论了两者在功能上的互补性,并利用有限马尔可夫链的性质证明了HIAEDA算法的收敛性.对测试函数和实际工程问题的仿真实验结果表明,HIAEDA与NSGAII算法和基于EDA的进化多目标优化算法RM-MEDA相比,在收敛性和多样性方面均表现出明显优势,尤其是对于决策变量之间存在非线性关联的复杂多目标优化问题,优势更为突出.