Pacific oyster(Crassostrea gigas)is one of the most important mollusks cultured all around the world.Selective breeding programs of Pacific oysters in China is initiated since 2006 and developed the genetically improv...Pacific oyster(Crassostrea gigas)is one of the most important mollusks cultured all around the world.Selective breeding programs of Pacific oysters in China is initiated since 2006 and developed the genetically improved strain with fast-growing trait.However,little is known about the metabolic signatures of the fast-growing trait.In the present study,the non-targeted metabolomics was performed to analyze the metabolic signatures of adductor muscle tissue in one-year old Pacific oysters from fast-growing strain and the wild population.A total of 7767 and 10174 valid peaks were extracted and quantified in ESI^(+)and ESI^(−)modes,resulting in 399 and 381 annotated metabolites,respectively.PCA and OPLS-DA revealed that considerable separation among samples from fastgrowing strain and wild population,suggesting the differences in metabolic signatures.Meanwhile,81 significantly different metabolites(SDMs)were identified in the comparisons between fast-growing strain and wild population,based on the strict thresholds.It was found that there were highly correlation and conserved coordination among these SDMs.KEGG enrichment analysis indicated that the SDMs were tightly related to pantothenate and CoA biosynthesis,steroid hormone biosynthesis,riboflavin metabolism,and arginine and proline metabolism.Of them,the CoA biosynthesis and metabolism,affected by pantetheine and pantothenic acid,might be important for the growth of Pacific oysters under artificial selective breeding.The study provides the comprehensive views of metabolic signatures in response to artificially selective breeding,and is helpful to better understand the molecular mechanism of fastgrowing traits in Pacific oysters.展开更多
This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga...This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga- tion artificial neural network (BPANN). We established the model based on data gathered from metabolic syndrome patients (n = 1012) and normal controls (n = 1069) by BPANN. Mean impact value (MIV) for each input variable was calculated and the sequence of factors was sorted according to their absolute MIVs. Generalized multifactor dimensionality reduction (GMDR) confirmed a joint effect of PPAR-9" and RXR-a based on the results from BPANN. By BPANN analysis, the sequences according to the importance of metabolic syndrome risk fac- tors were in the order of body mass index (BMI), serum adiponectin, rs4240711, gender, rs4842194, family history of type 2 diabetes, rs2920502, physical activity, alcohol drinking, rs3856806, family history of hypertension, rs1045570, rs6537944, age, rs17817276, family history of hyperlipidemia, smoking, rs1801282 and rs3132291. However, no polymorphism was statistically significant in multiple logistic regression analysis. After controlling for environmental factors, A1, A2, B1 and B2 (rs4240711, rs4842194, rs2920502 and rs3856806) models were the best models (cross-validation consistency 10/10, P = 0.0107) with the GMDR method. In conclusion, the interaction of the PPAR-γ and RXR-α gene could play a role in susceptibility to metabolic syndrome. A more realistic model is obtained by using BPANN to screen out determinants of diseases of multiple etiologies like metabolic syndrome.展开更多
Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment ...Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment methods.Hibernation has the characteristics of low temperature,low metabolism,and hibernation rhythm,as well as protective effects on the nervous,cardiovascular,and motor systems.Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body’s metabolism,lowering the body’s core temperature,and allowing the body to enter a state similar to hibernation.This review introduces artificial hibernation technology,including mild hypothermia treatment technology,central nervous system regulation technology,and artificial hibernation-inducer technology.Upon summarizing the relevant research on artificial hibernation technology in acute brain injury,the research results show that artificial hibernation technology has neuroprotective,anti-inflammatory,and oxidative stress-resistance effects,indicating that it has therapeutic significance in acute brain injury.Furthermore,artificial hibernation technology can alleviate the damage of ischemic stroke,traumatic brain injury,cerebral hemorrhage,cerebral infarction,and other diseases,providing new strategies for treating acute brain injury.However,artificial hibernation technology is currently in its infancy and has some complications,such as electrolyte imbalance and coagulation disorders,which limit its use.Further research is needed for its clinical application.展开更多
The quality and aroma of strong-flavor Baijiu are mainly dependent on Daqu,pit mud(PM),and the interaction of both.However,little is known about how their combination patterns affect the microbiome and metabolome of Z...The quality and aroma of strong-flavor Baijiu are mainly dependent on Daqu,pit mud(PM),and the interaction of both.However,little is known about how their combination patterns affect the microbiome and metabolome of Zaopei,especially the metabolic function of rare taxa.Here,an experiment on industrial size was designed to assess the effects of 6 combinations(3 kinds of Daqu×2 kinds of PM)on the composition and assembly of different taxa,as well as the flavor profile.The results showed that Zaopei's microbiota was composed of a few abundant taxa and enormous rare taxa,and rare bacterial and abundant fungal subcommunities were significantly affected by combination patterns.The assembly processes of abundant/rare taxa and bacterial/fungal communities were distinct,and environmental changes mediated the balance between stochastic and deterministic processes in rare bacteria assembly.Furthermore,specific combination patterns improved the flavor quality of Zaopei by enhancing the interspecies interaction,which was closely related to rare taxa,especially rare bacteria.These findings highlighted that rare bacteria might be the keystone in involving community interaction and maintaining metabolic function,which provided a scientific foundation for better understanding and regulating the brewing microbiota from the viewpoint of microbial ecology.展开更多
基金supported by grants from the Earmarked Fund for Agriculture Seed Improvement Project of Shandong Province(Nos.2021ZLGX03 and 2022LZGCQY010)the China Agriculture Research System Project(No.CARS-49).
文摘Pacific oyster(Crassostrea gigas)is one of the most important mollusks cultured all around the world.Selective breeding programs of Pacific oysters in China is initiated since 2006 and developed the genetically improved strain with fast-growing trait.However,little is known about the metabolic signatures of the fast-growing trait.In the present study,the non-targeted metabolomics was performed to analyze the metabolic signatures of adductor muscle tissue in one-year old Pacific oysters from fast-growing strain and the wild population.A total of 7767 and 10174 valid peaks were extracted and quantified in ESI^(+)and ESI^(−)modes,resulting in 399 and 381 annotated metabolites,respectively.PCA and OPLS-DA revealed that considerable separation among samples from fastgrowing strain and wild population,suggesting the differences in metabolic signatures.Meanwhile,81 significantly different metabolites(SDMs)were identified in the comparisons between fast-growing strain and wild population,based on the strict thresholds.It was found that there were highly correlation and conserved coordination among these SDMs.KEGG enrichment analysis indicated that the SDMs were tightly related to pantothenate and CoA biosynthesis,steroid hormone biosynthesis,riboflavin metabolism,and arginine and proline metabolism.Of them,the CoA biosynthesis and metabolism,affected by pantetheine and pantothenic acid,might be important for the growth of Pacific oysters under artificial selective breeding.The study provides the comprehensive views of metabolic signatures in response to artificially selective breeding,and is helpful to better understand the molecular mechanism of fastgrowing traits in Pacific oysters.
基金supported by the National Natural Science Foundation of China Grant No.30771858Jiangsu Provincial Natural Science Foundation Grant No.BK2007229Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga- tion artificial neural network (BPANN). We established the model based on data gathered from metabolic syndrome patients (n = 1012) and normal controls (n = 1069) by BPANN. Mean impact value (MIV) for each input variable was calculated and the sequence of factors was sorted according to their absolute MIVs. Generalized multifactor dimensionality reduction (GMDR) confirmed a joint effect of PPAR-9" and RXR-a based on the results from BPANN. By BPANN analysis, the sequences according to the importance of metabolic syndrome risk fac- tors were in the order of body mass index (BMI), serum adiponectin, rs4240711, gender, rs4842194, family history of type 2 diabetes, rs2920502, physical activity, alcohol drinking, rs3856806, family history of hypertension, rs1045570, rs6537944, age, rs17817276, family history of hyperlipidemia, smoking, rs1801282 and rs3132291. However, no polymorphism was statistically significant in multiple logistic regression analysis. After controlling for environmental factors, A1, A2, B1 and B2 (rs4240711, rs4842194, rs2920502 and rs3856806) models were the best models (cross-validation consistency 10/10, P = 0.0107) with the GMDR method. In conclusion, the interaction of the PPAR-γ and RXR-α gene could play a role in susceptibility to metabolic syndrome. A more realistic model is obtained by using BPANN to screen out determinants of diseases of multiple etiologies like metabolic syndrome.
基金supported by the National Defense Science and Technology Outstanding Youth Science Fund Project,No.2021-JCJQ-ZQ-035National Defense Innovation Special Zone Project,No.21-163-12-ZT-006-002-13Key Program of the National Natural Science Foundation of China,No.11932013(all to XuC).
文摘Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment methods.Hibernation has the characteristics of low temperature,low metabolism,and hibernation rhythm,as well as protective effects on the nervous,cardiovascular,and motor systems.Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body’s metabolism,lowering the body’s core temperature,and allowing the body to enter a state similar to hibernation.This review introduces artificial hibernation technology,including mild hypothermia treatment technology,central nervous system regulation technology,and artificial hibernation-inducer technology.Upon summarizing the relevant research on artificial hibernation technology in acute brain injury,the research results show that artificial hibernation technology has neuroprotective,anti-inflammatory,and oxidative stress-resistance effects,indicating that it has therapeutic significance in acute brain injury.Furthermore,artificial hibernation technology can alleviate the damage of ischemic stroke,traumatic brain injury,cerebral hemorrhage,cerebral infarction,and other diseases,providing new strategies for treating acute brain injury.However,artificial hibernation technology is currently in its infancy and has some complications,such as electrolyte imbalance and coagulation disorders,which limit its use.Further research is needed for its clinical application.
基金supported by the Cooperation Project of Luzhou Laojiao Co.,Ltd.Sichuan University (21H0997)。
文摘The quality and aroma of strong-flavor Baijiu are mainly dependent on Daqu,pit mud(PM),and the interaction of both.However,little is known about how their combination patterns affect the microbiome and metabolome of Zaopei,especially the metabolic function of rare taxa.Here,an experiment on industrial size was designed to assess the effects of 6 combinations(3 kinds of Daqu×2 kinds of PM)on the composition and assembly of different taxa,as well as the flavor profile.The results showed that Zaopei's microbiota was composed of a few abundant taxa and enormous rare taxa,and rare bacterial and abundant fungal subcommunities were significantly affected by combination patterns.The assembly processes of abundant/rare taxa and bacterial/fungal communities were distinct,and environmental changes mediated the balance between stochastic and deterministic processes in rare bacteria assembly.Furthermore,specific combination patterns improved the flavor quality of Zaopei by enhancing the interspecies interaction,which was closely related to rare taxa,especially rare bacteria.These findings highlighted that rare bacteria might be the keystone in involving community interaction and maintaining metabolic function,which provided a scientific foundation for better understanding and regulating the brewing microbiota from the viewpoint of microbial ecology.