期刊文献+
共找到14,374篇文章
< 1 2 250 >
每页显示 20 50 100
A data-driven model of drop size prediction based on artificial neural networks using small-scale data sets 被引量:1
1
作者 Bo Wang Han Zhou +3 位作者 Shan Jing Qiang Zheng Wenjie Lan Shaowei Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期71-83,共13页
An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and ... An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and 9.3%,respectively.Through ANN model,the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed.Droplet size gradually increases with the increase of interfacial tension,and decreases with the increase of pulse intensity.It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range.For two kinds of columns,the drop size prediction deviations of ANN model are 9.6%and 18.5%and the deviations in correlations are 11%and 15%. 展开更多
关键词 artificial neural network Drop size Solvent extraction Pulsed column Two-phase flow HYDRODYNAMICS
下载PDF
Artificial neural network-based method for discriminating Compton scattering events in high-purity germaniumγ-ray spectrometer
2
作者 Chun-Di Fan Guo-Qiang Zeng +5 位作者 Hao-Wen Deng Lei Yan Jian Yang Chuan-Hao Hu Song Qing Yang Hou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期64-84,共21页
To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resul... To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resulting in an extremely low detection limit and improving the measurement accuracy.However,the complex and expensive hardware required does not facilitate the application or promotion of this method.Thus,a method is proposed in this study to discriminate the digital waveform of pulse signals output using an HPGe detector,whereby Compton scattering background is suppressed and a low minimum detectable activity(MDA)is achieved without using an expensive and complex anticoincidence detector and device.The electric-field-strength and energy-deposition distributions of the detector are simulated to determine the relationship between pulse shape and energy-deposition location,as well as the characteristics of energy-deposition distributions for fulland partial-energy deposition events.This relationship is used to develop a pulse-shape-discrimination algorithm based on an artificial neural network for pulse-feature identification.To accurately determine the relationship between the deposited energy of gamma(γ)rays in the detector and the deposition location,we extract four shape parameters from the pulse signals output by the detector.Machine learning is used to input the four shape parameters into the detector.Subsequently,the pulse signals are identified and classified to discriminate between partial-and full-energy deposition events.Some partial-energy deposition events are removed to suppress Compton scattering.The proposed method effectively decreases the MDA of an HPGeγ-energy dispersive spectrometer.Test results show that the Compton suppression factors for energy spectra obtained from measurements on ^(152)Eu,^(137)Cs,and ^(60)Co radioactive sources are 1.13(344 keV),1.11(662 keV),and 1.08(1332 keV),respectively,and that the corresponding MDAs are 1.4%,5.3%,and 21.6%lower,respectively. 展开更多
关键词 High-purity germaniumγ-ray spectrometer Pulse-shape discrimination Compton scattering artificial neural network Minimum detectable activity
下载PDF
A sub-grid scale model for Burgers turbulence based on the artificial neural network method
3
作者 Xin Zhao Kaiyi Yin 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期162-165,共4页
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis... The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence. 展开更多
关键词 artificial neural network Back propagation method Burgers turbulence Large eddy simulation Sub-grid scale model
下载PDF
Evidence of the Great Attractor and Great Repeller from Artificial Neural Network Imputation of Sloan Digital Sky Survey
4
作者 Christopher Cillian O’Neill 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1178-1194,共17页
The Sloane Digital Sky Survey (SDSS) has been in the process of creating a 3D digital map of the Universe, since 2000AD. However, it has not been able to map that portion of the sky which is occluded by the dust gas a... The Sloane Digital Sky Survey (SDSS) has been in the process of creating a 3D digital map of the Universe, since 2000AD. However, it has not been able to map that portion of the sky which is occluded by the dust gas and stars of our own Milkyway Galaxy. This research builds on work from a previous paper that sought to impute this missing galactic information using Inpainting, polar transforms and Linear Regression ANNs. In that paper, the author only attempted to impute the data in the Northern hemisphere using the ANN model, which subsequently confirmed the existence of the Great Attractor and the homogeneity of the Universe. In this paper, the author has imputed the Southern Hemisphere and discovered a region that is mostly devoid of stars. Since this area appears to be the counterpart to the Great Attractor, the author refers to it as the Great Repeller and postulates that it is an area of physical repulsion, inline with the work of GerdPommerenke and others. Finally, the paper investigates large scale structures in the imputed galaxies. 展开更多
关键词 artificial neural Networks Convolutional neural Networks SDSS ANISOTROPIES Great Attractor
下载PDF
The Role and Place of Artificial Neural Network Architectures Structural Redundancy in the Input Data Prototypes and Generalization Development
5
作者 Conrad Onésime Oboulhas Tsahat Ngoulou-A-Ndzeli Béranger Destin Ossibi 《Journal of Computer and Communications》 2024年第7期1-11,共11页
Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take ca... Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described. 展开更多
关键词 Multilayer neural Network Multidimensional Nonlinear Interpolation Generalization by Similarity artificial Intelligence Prototype Development
下载PDF
Artificial Neural Network and Fuzzy Logic Based Techniques for Numerical Modeling and Prediction of Aluminum-5%Magnesium Alloy Doped with REM Neodymium
6
作者 Anukwonke Maxwell Chukwuma Chibueze Ikechukwu Godwills +1 位作者 Cynthia C. Nwaeju Osakwe Francis Onyemachi 《International Journal of Nonferrous Metallurgy》 2024年第1期1-19,共19页
In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties ... In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R). 展开更多
关键词 Al-5%Mg Alloy NEODYMIUM artificial neural Network Fuzzy Logic Average Grain Size and Mechanical Properties
下载PDF
Artificial intelligence-assisted repair of peripheral nerve injury: a new research hotspot and associated challenges 被引量:2
7
作者 Yang Guo Liying Sun +3 位作者 Wenyao Zhong Nan Zhang Zongxuan Zhao Wen Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期663-670,共8页
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on p... Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies. 展开更多
关键词 artificial intelligence artificial prosthesis medical-industrial integration brain-machine interface deep learning machine learning networked hand prosthesis neural interface neural network neural regeneration peripheral nerve
下载PDF
Artificial Intelligence Prediction of One-Part Geopolymer Compressive Strength for Sustainable Concrete
8
作者 Mohamed Abdel-Mongy Mudassir Iqbal +3 位作者 M.Farag Ahmed.M.Yosri Fahad Alsharari Saif Eldeen A.S.Yousef 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期525-543,共19页
Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for pre... Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for precursors for developing a one-part geopolymer.However,determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported.Therefore,in this study,machine learning methods such as artificial neural networks(ANN)and gene expression programming(GEP)models were developed usingMATLAB and GeneXprotools,respectively,for the prediction of compressive strength under variable input materials and content for fly ash and slag-based one-part geopolymer.The database for this study contains 171 points extracted from literature with input parameters:fly ash concentration,slag content,calcium hydroxide content,sodium oxide dose,water binder ratio,and curing temperature.The performance of the two models was evaluated under various statistical indices,namely correlation coefficient(R),mean absolute error(MAE),and rootmean square error(RMSE).In terms of the strength prediction efficacy of a one-part geopolymer,ANN outperformed GEP.Sensitivity and parametric analysis were also performed to identify the significant contributor to strength.According to a sensitivity analysis,the activator and slag contents had the most effects on the compressive strength at 28 days.The water binder ratio was shown to be directly connected to activator percentage,slag percentage,and calcium hydroxide percentage and inversely related to compressive strength at 28 days and curing temperature. 展开更多
关键词 artificial intelligence techniques one-part geopolymer artificial neural network gene expression modelling sustainable construction polymers
下载PDF
A scoping review of methodologies for applying artificial intelligence to physical activity interventions
9
作者 Ruopeng An Jing Shen +1 位作者 Junjie Wang Yuyi Yang 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第3期428-441,共14页
Purpose This scoping review aimed to offer researchers and practitioners an understanding of artificial intelligence(AI)applications in physical activity(PA)interventions;introduce them to prevalent machine learning(M... Purpose This scoping review aimed to offer researchers and practitioners an understanding of artificial intelligence(AI)applications in physical activity(PA)interventions;introduce them to prevalent machine learning(ML),deep learning(DL),and reinforcement learning(RL)algorithms;and encourage the adoption of AI methodologies.Methods A scoping review was performed in PubMed,Web of Science,Cochrane Library,and EBSCO focusing on AI applications for promoting PA or predicting related behavioral or health outcomes.AI methodologies were summarized and categorized to identify synergies,patterns,and trends informing future research.Additionally,a concise primer on predominant AI methodologies within the realm of PA was provided to bolster understanding and broader application.Results The review included 24 studies that met the predetermined eligibility criteria.AI models were found effective in detecting significant patterns of PA behavior and associations between specific factors and intervention outcomes.Most studies comparing AI models to traditional statistical approaches reported higher prediction accuracy for AI models on test data.Comparisons of different AI models yielded mixed results,likely due to model performance being highly dependent on the dataset and task.An increasing trend of adopting state-of-the-art DL and RL models over standard ML was observed,addressing complex human–machine communication,behavior modification,and decision-making tasks.Six key areas for future AI adoption in PA interventions emerged:personalized PA interventions,real-time monitoring and adaptation,integration of multimodal data sources,evaluation of intervention effectiveness,expanding access to PA interventions,and predicting and preventing injuries.Conclusion The scoping review highlights the potential of AI methodologies for advancing PA interventions.As the field progresses,staying informed and exploring emerging AI-driven strategies is essential for achieving significant improvements in PA interventions and fostering overall well-being. 展开更多
关键词 artificial intelligence INTERVENTION Machine learning neural network Physical activity
下载PDF
Advances in memristor based artificial neuron fabrication-materials,models,and applications
10
作者 Jingyao Bian Zhiyong Liu +5 位作者 Ye Tao Zhongqiang Wang Xiaoning Zhao Ya Lin Haiyang Xu Yichun Liu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期27-50,共24页
Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and l... Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and low energy consumption characteristics.Analogous to the working mechanism of human brain,the SNN system transmits information through the spiking action of neurons.Therefore,artificial neurons are critical building blocks for constructing SNN in hardware.Memristors are drawing growing attention due to low consumption,high speed,and nonlinearity characteristics,which are recently introduced to mimic the functions of biological neurons.Researchers have proposed multifarious memristive materials including organic materials,inorganic materials,or even two-dimensional materials.Taking advantage of the unique electrical behavior of these materials,several neuron models are successfully implemented,such as Hodgkin–Huxley model,leaky integrate-and-fire model and integrate-and-fire model.In this review,the recent reports of artificial neurons based on memristive devices are discussed.In addition,we highlight the models and applications through combining artificial neuronal devices with sensors or other electronic devices.Finally,the future challenges and outlooks of memristor-based artificial neurons are discussed,and the development of hardware implementation of brain-like intelligence system based on SNN is also prospected. 展开更多
关键词 artificial neuron MEMRISTOR memristive materials neuron model micro-nano manufacturing spiking neural network
下载PDF
Advances in neuromorphic computing:Expanding horizons for AI development through novel artificial neurons and in-sensor computing
11
作者 杨玉波 赵吉哲 +11 位作者 刘胤洁 华夏扬 王天睿 郑纪元 郝智彪 熊兵 孙长征 韩彦军 王健 李洪涛 汪莱 罗毅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期1-23,共23页
AI development has brought great success to upgrading the information age.At the same time,the large-scale artificial neural network for building AI systems is thirsty for computing power,which is barely satisfied by ... AI development has brought great success to upgrading the information age.At the same time,the large-scale artificial neural network for building AI systems is thirsty for computing power,which is barely satisfied by the conventional computing hardware.In the post-Moore era,the increase in computing power brought about by the size reduction of CMOS in very large-scale integrated circuits(VLSIC)is challenging to meet the growing demand for AI computing power.To address the issue,technical approaches like neuromorphic computing attract great attention because of their feature of breaking Von-Neumann architecture,and dealing with AI algorithms much more parallelly and energy efficiently.Inspired by the human neural network architecture,neuromorphic computing hardware is brought to life based on novel artificial neurons constructed by new materials or devices.Although it is relatively difficult to deploy a training process in the neuromorphic architecture like spiking neural network(SNN),the development in this field has incubated promising technologies like in-sensor computing,which brings new opportunities for multidisciplinary research,including the field of optoelectronic materials and devices,artificial neural networks,and microelectronics integration technology.The vision chips based on the architectures could reduce unnecessary data transfer and realize fast and energy-efficient visual cognitive processing.This paper reviews firstly the architectures and algorithms of SNN,and artificial neuron devices supporting neuromorphic computing,then the recent progress of in-sensor computing vision chips,which all will promote the development of AI. 展开更多
关键词 neuromorphic computing spiking neural network(SNN) in-sensor computing artificial intelligence
下载PDF
Predictive active control of building structures using LQR and artificial intelligence
12
作者 Nirmal S.Mehta Vishisht Bhaiya +1 位作者 K.A.Patel Ehsan Noroozinejad Farsangi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期489-502,共14页
This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is... This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is used to determine the various responses of the structure.The responses are determined by numerically analyzing the governing equation of motion using the state-space approach.For training a neural network,four input parameters are considered:the time history of the ground motion,the percentage reduction in lateral displacement,lateral velocity,and lateral acceleration,Output parameters are LQR weighting matrices.To study the effectiveness of an LQR-based neural network(LQRNN),the actual percentage reduction in the responses obtained from using LQRNN is compared with the target percentage reductions.Furthermore,to investigate the efficacy of an active control system using LQRNN,the controlled responses of a system are compared to the corresponding uncontrolled responses.The trained neural network effectively predicts weighting parameters that can provide a percentage reduction in displacement,velocity,and acceleration close to the target percentage reduction.Based on the simulation study,it can be concluded that significant response reductions are observed in the active-controlled system using LQRNN.Moreover,the LQRNN algorithm can replace conventional LQR control with the use of an active control system. 展开更多
关键词 active control system linear quadratic regulator artificial neural networks state-space approach response effectiveness factor RESILIENCE
下载PDF
A Survey on Chinese Sign Language Recognition:From Traditional Methods to Artificial Intelligence
13
作者 Xianwei Jiang Yanqiong Zhang +1 位作者 Juan Lei Yudong Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1-40,共40页
Research on Chinese Sign Language(CSL)provides convenience and support for individuals with hearing impairments to communicate and integrate into society.This article reviews the relevant literature on Chinese Sign La... Research on Chinese Sign Language(CSL)provides convenience and support for individuals with hearing impairments to communicate and integrate into society.This article reviews the relevant literature on Chinese Sign Language Recognition(CSLR)in the past 20 years.Hidden Markov Models(HMM),Support Vector Machines(SVM),and Dynamic Time Warping(DTW)were found to be the most commonly employed technologies among traditional identificationmethods.Benefiting from the rapid development of computer vision and artificial intelligence technology,Convolutional Neural Networks(CNN),3D-CNN,YOLO,Capsule Network(CapsNet)and various deep neural networks have sprung up.Deep Neural Networks(DNNs)and their derived models are integral tomodern artificial intelligence recognitionmethods.In addition,technologies thatwerewidely used in the early days have also been integrated and applied to specific hybrid models and customized identification methods.Sign language data collection includes acquiring data from data gloves,data sensors(such as Kinect,LeapMotion,etc.),and high-definition photography.Meanwhile,facial expression recognition,complex background processing,and 3D sign language recognition have also attracted research interests among scholars.Due to the uniqueness and complexity of Chinese sign language,accuracy,robustness,real-time performance,and user independence are significant challenges for future sign language recognition research.Additionally,suitable datasets and evaluation criteria are also worth pursuing. 展开更多
关键词 Chinese Sign Language Recognition deep neural networks artificial intelligence transfer learning hybrid network models
下载PDF
Real-Time Prediction of Urban Traffic Problems Based on Artificial Intelligence-Enhanced Mobile Ad Hoc Networks(MANETS)
14
作者 Ahmed Alhussen Arshiya S.Ansari 《Computers, Materials & Continua》 SCIE EI 2024年第5期1903-1923,共21页
Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne... Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities. 展开更多
关键词 Mobile AdHocNetworks(MANET) urban traffic prediction artificial intelligence(AI) traffic congestion chaotic spatial fuzzy polynomial neural network(CSFPNN)
下载PDF
Artificial neural network-based one-equation model for simulation of laminar-turbulent transitional flow 被引量:1
15
作者 Lei Wu Bing Cui Zuoli Xiao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期50-57,共8页
A mapping function between the Reynolds-averaged Navier-Stokes mean flow variables and transition intermittency factor is constructed by fully connected artificial neural network(ANN),which replaces the governing equa... A mapping function between the Reynolds-averaged Navier-Stokes mean flow variables and transition intermittency factor is constructed by fully connected artificial neural network(ANN),which replaces the governing equation of the intermittency factor in transition-predictive Spalart-Allmaras(SA)-γmodel.By taking SA-γmodel as the benchmark,the present ANN model is trained at two airfoils with various angles of attack,Mach numbers and Reynolds numbers,and tested with unseen airfoils in different flow states.The a posteriori tests manifest that the mean pressure coefficient,skin friction coefficient,size of laminar separation bubble,mean streamwise velocity,Reynolds shear stress and lift/drag/moment coefficient from the present two-way coupling ANN model almost coincide with those from the benchmark SA-γmodel.Furthermore,the ANN model proves to exhibit a higher calculation efficiency and better convergence quality than traditional SA-γmodel. 展开更多
关键词 TRANSITION TURBULENCE Eddy-viscosity model artificial neural network Intermittency factor
下载PDF
Prediction of column failure modes based on artificial neural network 被引量:1
16
作者 Wan Haitao Qi Yongle +2 位作者 Zhao Tiejun Ren Wenjuan Fu Xiaoyan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第2期481-493,共13页
To implement the performance-based seismic design of engineered structures,the failure modes of members must be classified.The classification method of column failure modes is analyzed using data from the Pacific Eart... To implement the performance-based seismic design of engineered structures,the failure modes of members must be classified.The classification method of column failure modes is analyzed using data from the Pacific Earthquake Engineering Research Center(PEER).The main factors affecting failure modes of columns include the hoop ratios,longitudinal reinforcement ratios,ratios of transverse reinforcement spacing to section depth,aspect ratios,axial compression ratios,and flexure-shear ratios.This study proposes a data-driven prediction model based on an artificial neural network(ANN)to identify the column failure modes.In this study,111 groups of data are used,out of which 89 are used as training data and 22 are used as test data,and the ANN prediction model of failure modes is developed.The results show that the proposed method based on ANN is superior to traditional methods in identifying the column failure modes. 展开更多
关键词 performance-based seismic design failure mode COLUMN artificial neural network prediction model
下载PDF
Adaptive fuze-warhead coordination method based on BP artificial neural network 被引量:1
17
作者 Peng Hou Yang Pei Yu-xue Ge 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期117-133,共17页
The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the... The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network(BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missiletarget intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuzewarhead coordination effect is less influenced by the location of the aim point. 展开更多
关键词 Aircraft vulnerability Fuze-warhead coordination BP artificial neural network Damage probability Initiation delay
下载PDF
Prediction of Apple Fruit Quality by Soil Nutrient Content and Artificial Neural Network 被引量:1
18
作者 Mengyao Yan Xianqi Zeng +5 位作者 Banghui Zhang Hui Zhang Di Tan Binghua Cai Shenchun Qu Sanhong Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期193-208,共16页
The effect of soil nutrient content on fruit yield and fruit quality is very important.To explore the effect of soil nutrients on apple quality we investigated 200 fruit samples from 40 orchards in Feng County,Jiangsu... The effect of soil nutrient content on fruit yield and fruit quality is very important.To explore the effect of soil nutrients on apple quality we investigated 200 fruit samples from 40 orchards in Feng County,Jiangsu Province.Soil mineral elements and fruit quality were measured.The effect of soil nutrient content on fruit quality was analyzed by artificial neural network(ANN)model.The results showed that the prediction accuracy was highest(R2=0.851,0.847,0.885,0.678 and 0.746)in mass per fruit(MPF),hardness(HB),soluble solids concentrations(SSC),titratable acid concentration(TA)and solid-acid ratio(SSC/TA),respectively.The sensitivity analysis of the prediction model showed that soil available P,K,Ca and Mg contents had the greatest impact on the quality of apple fruit.Response surface method(RSM)was performed to determine the optimum range of the available P,K,Ca,and Mg contents in orchards In Feng County,which were 10∼20 mg⋅kg^(−1),170∼200 mg⋅kg^(−1),1000∼1500 mg⋅kg^(−1),and 80∼200 mg⋅kg^(−1),respectively.The research also concluded that improving the content of available P and available Ca in orchard soil was crucial to improve apple fruit quality in Feng County,Jiangsu Province. 展开更多
关键词 APPLE soil nutrients fruit quality artificial neural network sensitivity analysis response surface methodology analysis
下载PDF
Exploring Explicit Coarse-Grained Structure in Artificial Neural Networks
19
作者 杨析辞 谢志远 杨晓涛 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第2期6-14,共9页
We propose to employ a hierarchical coarse-grained structure in artificial neural networks explicitly to improve the interpretability without degrading performance.The idea has been applied in two situations.One is a ... We propose to employ a hierarchical coarse-grained structure in artificial neural networks explicitly to improve the interpretability without degrading performance.The idea has been applied in two situations.One is a neural network called Taylor Net,which aims to approximate the general mapping from input data to output result in terms of Taylor series directly,without resorting to any magic nonlinear activations.The other is a new setup for data distillation,which can perform multi-level abstraction of the input dataset and generate new data that possesses the relevant features of the original dataset and can be used as references for classification.In both the cases,the coarse-grained structure plays an important role in simplifying the network and improving both the interpretability and efficiency.The validity has been demonstrated on MNIST and CIFAR-10 datasets.Further improvement and some open questions related are also discussed. 展开更多
关键词 neural artificial HIERARCHICAL
下载PDF
Artificial neural network analysis of the day of the week anomaly in cryptocurrencies
20
作者 Nuray Tosunoğlu Hilal Abacı +1 位作者 Gizem Ateş Neslihan SaygılıAkkaya 《Financial Innovation》 2023年第1期2558-2581,共24页
Anomalies,which are incompatible with the efficient market hypothesis and mean a deviation from normality,have attracted the attention of both financial investors and researchers.A salient research topic is the existe... Anomalies,which are incompatible with the efficient market hypothesis and mean a deviation from normality,have attracted the attention of both financial investors and researchers.A salient research topic is the existence of anomalies in cryptocurrencies,which have a different financial structure from that of traditional financial markets.This study expands the literature by focusing on artificial neural networks to compare different currencies of the cryptocurrency market,which is hard to predict.It aims to investigate the existence of the day-of-the-week anomaly in cryptocurrencies with feedforward artificial neural networks as an alternative to traditional methods.An artificial neural network is an effective approach that can model the nonlinear and complex behavior of cryptocurrencies.On October 6,2021,Bitcoin(BTC),Ethereum(ETH),and Cardano(ADA),which are the top three cryptocurrencies in terms of market value,were selected for this study.The data for the analysis,consisting of the daily closing prices for BTC,ETH,and ADA,were obtained from the Coinmarket.com website from January 1,2018 to May 31,2022.The effectiveness of the established models was tested with mean squared error,root mean squared error,mean absolute error,and Theil’s U1,and R2 OOS was used for out-of-sample.The Diebold–Mariano test was used to statistically reveal the difference between the out-of-sample prediction accuracies of the models.When the models created with feedforward artificial neural networks are examined,the existence of the day-of-the-week anomaly is established for BTC,but no day-of-the-week anomaly for ETH and ADA was found. 展开更多
关键词 Cryptocurrency Bitcoin Ethereum Cardano Day-of-the-week anomaly artificial neural network
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部