期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Artificial Neural Networks Applied to Gas Mixture Analysis
1
作者 Yong Jing LIN Er Yi ZRU Peng Yuan YANG(The Laboratory of Analytical Science,Xiamen University Xiamen 361005) 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第7期623-626,共4页
An array composed of sixteen gas sensors was constructed to analyze gas mixtures quantitatively. The data of responses from the sensor array to ethane, propane and propylene were treated by three-layer ANN with BP alg... An array composed of sixteen gas sensors was constructed to analyze gas mixtures quantitatively. The data of responses from the sensor array to ethane, propane and propylene were treated by three-layer ANN with BP algorithms and PLS. The analytical results indicated that the concentration predicted with ANN is better than that with PLS. The average prediction errors for ethane, propane and propylene were 5.11%, 8.28%, 2.64%, respectively. 展开更多
关键词 WANG artificial neural networks Applied to Gas Mixture analysis
下载PDF
Prediction of effluent concentration in a wastewater treatment plant using machine learning models 被引量:6
2
作者 Hong Guo Kwanho Jeong +5 位作者 Jiyeon Lim Jeongwon Jo Young Mo Kim Jong-pyo Park Joon Ha Kim Kyung Hwa Cho 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第6期90-101,共12页
Of growing amount of food waste, the integrated food waste and waste water treatment was regarded as one of the efficient modeling method. However, the load of food waste to the conventional waste treatment process mi... Of growing amount of food waste, the integrated food waste and waste water treatment was regarded as one of the efficient modeling method. However, the load of food waste to the conventional waste treatment process might lead to the high concentration of total nitrogen(T-N) impact on the effluent water quality. The objective of this study is to establish two machine learning models-artificial neural networks(ANNs) and support vector machines(SVMs), in order to predict 1-day interval T-N concentration of effluent from a wastewater treatment plant in Ulsan, Korea. Daily water quality data and meteorological data were used and the performance of both models was evaluated in terms of the coefficient of determination(R^2), Nash-Sutcliff efficiency(NSE), relative efficiency criteria(d rel). Additionally, Latin-Hypercube one-factor-at-a-time(LH-OAT) and a pattern search algorithm were applied to sensitivity analysis and model parameter optimization, respectively. Results showed that both models could be effectively applied to the 1-day interval prediction of T-N concentration of effluent. SVM model showed a higher prediction accuracy in the training stage and similar result in the validation stage.However, the sensitivity analysis demonstrated that the ANN model was a superior model for 1-day interval T-N concentration prediction in terms of the cause-and-effect relationship between T-N concentration and modeling input values to integrated food waste and waste water treatment. This study suggested the efficient and robust nonlinear time-series modeling method for an early prediction of the water quality of integrated food waste and waste water treatment process. 展开更多
关键词 artificial neural network Support vector machine Effluent concentration Prediction accuracy Sensitivity analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部