Insulator becomes wet partially or completely, and the pollution layer on itbecomes conductive, when collecting pollutants for an extended period during dew, light rain, mist,fog or snow melting. Heavy rain is a compl...Insulator becomes wet partially or completely, and the pollution layer on itbecomes conductive, when collecting pollutants for an extended period during dew, light rain, mist,fog or snow melting. Heavy rain is a complicated factor that it may wash away the pollution layerwithout initiating other stages of breakdown or it may bridge the gaps between sheds to promoteflashover. The insulator with a conducting pollution layer being energized, can cause a surfaceleakage current to flow (also temperature-rise). As the surface conductivity is non-uniform, theconducting pollution layer becomes broken by dry bands (at spots of high current density),interrupting the flow of leakage current. Voltage across insulator gets concentrated across drybands, and causes high electric stress and breakdown (dry band arcing). If the resistance of theinsulator surface is sufficiently low, the dry band arcs can be propagated to bridge the terminalscausing flashover. The present paper concerns the evaluation of the temperature distribution alongthe surface of an energized artificially polluted insulator string.展开更多
This paper presents the results of the study concerning to the leakagecurrent behaviour on artificially polluted ceramic insulator surface. From the present study it wasobserved that there is a reasonably well-defined...This paper presents the results of the study concerning to the leakagecurrent behaviour on artificially polluted ceramic insulator surface. From the present study it wasobserved that there is a reasonably well-defined inception of current i.e. scintillations at afinite voltage, The corresponding voltages for extinction of the current are in the range of 0.8 kVto 2.1 kV. Obviously, the dry band formed in the immediate vicinity of the pin prevents smoothcurrent flow as the voltage rises from zero. Only when the voltage is adequate it causes a flashoverof the dry band and current starts flowing. As is common in similar current extinction phenomena,here also, the extinction voltages are significantly lower than the inception voltages. Further, thevoltage-current curves invariably show hysteresis - the leakage currents are lower in the reducingportion of the voltage. This is obviously due to drying of the wet pollutant layer therebyincreasing its resistance. It is believed that this is the first time that such a directquantitative evidence of drying in individual half cycles is experimentally visualized.展开更多
The flashover of insulator strings occurring at normal working voltages undercontaminated/polluted conditions, obviously deserves serious consideration. Though much researchhas been gone into pollution-induced flashov...The flashover of insulator strings occurring at normal working voltages undercontaminated/polluted conditions, obviously deserves serious consideration. Though much researchhas been gone into pollution-induced flashover phenomena but grey areas still exist in ourknowledge. In the present experimental study the breakdown (flashover) voltages across gaps oninsulator top surfaces and gaps between sheds (on the underside of an insulator), also the flashoverstudies on a single unit and a 3-unit insulator strings were carried out. An attempt has been madeto correlate the values obtained for all the cases. From the present investigation it was found thatresistance measurement of individual units of a polluted 3-unit string before and after flashoverindicates that strongly differing resistances could be the cause of flashover of ceramic discinsulator strings.展开更多
In this paper, the impact of the conductivity and the distribution of pollution on the behavior of the high voltage insulator cap and pin 1512L, artificially polluted is described. An experimental model in form of a d...In this paper, the impact of the conductivity and the distribution of pollution on the behavior of the high voltage insulator cap and pin 1512L, artificially polluted is described. An experimental model in form of a disc is proposed. This experimental model reproduces the real model which is the 1512L insulator. Besides, a comparative study is presented. For this comparative study, different solutions are adopted to s`imulate the pollution (containing NaCl + distilled water) that has different conductivities for a discontinuous distribution of the pollution on the insulator under an AC voltage. Furthermore, the influence of the pollution on the flashover voltage and the leakage current is studied. Finally, the behavior of real and experimental model of the insulator is investigated.展开更多
文摘Insulator becomes wet partially or completely, and the pollution layer on itbecomes conductive, when collecting pollutants for an extended period during dew, light rain, mist,fog or snow melting. Heavy rain is a complicated factor that it may wash away the pollution layerwithout initiating other stages of breakdown or it may bridge the gaps between sheds to promoteflashover. The insulator with a conducting pollution layer being energized, can cause a surfaceleakage current to flow (also temperature-rise). As the surface conductivity is non-uniform, theconducting pollution layer becomes broken by dry bands (at spots of high current density),interrupting the flow of leakage current. Voltage across insulator gets concentrated across drybands, and causes high electric stress and breakdown (dry band arcing). If the resistance of theinsulator surface is sufficiently low, the dry band arcs can be propagated to bridge the terminalscausing flashover. The present paper concerns the evaluation of the temperature distribution alongthe surface of an energized artificially polluted insulator string.
文摘This paper presents the results of the study concerning to the leakagecurrent behaviour on artificially polluted ceramic insulator surface. From the present study it wasobserved that there is a reasonably well-defined inception of current i.e. scintillations at afinite voltage, The corresponding voltages for extinction of the current are in the range of 0.8 kVto 2.1 kV. Obviously, the dry band formed in the immediate vicinity of the pin prevents smoothcurrent flow as the voltage rises from zero. Only when the voltage is adequate it causes a flashoverof the dry band and current starts flowing. As is common in similar current extinction phenomena,here also, the extinction voltages are significantly lower than the inception voltages. Further, thevoltage-current curves invariably show hysteresis - the leakage currents are lower in the reducingportion of the voltage. This is obviously due to drying of the wet pollutant layer therebyincreasing its resistance. It is believed that this is the first time that such a directquantitative evidence of drying in individual half cycles is experimentally visualized.
文摘The flashover of insulator strings occurring at normal working voltages undercontaminated/polluted conditions, obviously deserves serious consideration. Though much researchhas been gone into pollution-induced flashover phenomena but grey areas still exist in ourknowledge. In the present experimental study the breakdown (flashover) voltages across gaps oninsulator top surfaces and gaps between sheds (on the underside of an insulator), also the flashoverstudies on a single unit and a 3-unit insulator strings were carried out. An attempt has been madeto correlate the values obtained for all the cases. From the present investigation it was found thatresistance measurement of individual units of a polluted 3-unit string before and after flashoverindicates that strongly differing resistances could be the cause of flashover of ceramic discinsulator strings.
文摘In this paper, the impact of the conductivity and the distribution of pollution on the behavior of the high voltage insulator cap and pin 1512L, artificially polluted is described. An experimental model in form of a disc is proposed. This experimental model reproduces the real model which is the 1512L insulator. Besides, a comparative study is presented. For this comparative study, different solutions are adopted to s`imulate the pollution (containing NaCl + distilled water) that has different conductivities for a discontinuous distribution of the pollution on the insulator under an AC voltage. Furthermore, the influence of the pollution on the flashover voltage and the leakage current is studied. Finally, the behavior of real and experimental model of the insulator is investigated.