Evergreen broad-leaved forestis one of the most important vegetation types in China.Because of the human activities,evergreen broad-leaved forest has been destroyed extensively,leading to degraded ecosystem.It is urge...Evergreen broad-leaved forestis one of the most important vegetation types in China.Because of the human activities,evergreen broad-leaved forest has been destroyed extensively,leading to degraded ecosystem.It is urgent to conserve and restore these natural forests in China. In this paper,the tendency and rate of species diversity restoration of the evergreen broad-leaved forest in Daming Mountain has been studied.The main resultsare as follows:(a)In subtropical mid-mountain area,species diversity in degraded evergreen broad-leaved forestcan be restored. Through analyzing b diversity index of communities in different time and space,it was found that the species composition of communities tend to be the same as that in the zonal evergreen broad-leaved forest.(b)The restoration rate of evergreen broad-leaved forest was very fast.Planting Chinese fir after clear-cutting and controlled burning of the forest,178 species appeared in a 600m^2 sample area after 20 years’natural recovering.Among the sespecies,58 were tree layer and the height of community reached 18m.The survey suggested that it would take only 20 years for the degraded forest to develop into community composed of lightdemanding broad-leaved pioneer trees and min-tolerance broad-leaved trees,and it need another 40~80 years to reach the stage consisting of min-tolerance evergreen broad-leaved trees.(c)Species number increased quickly at the early stage(2-20years)during vegetation recovering process toward the climax,and decreased at the min-stage (50-60 years),then maintained a relatively stable level at the late-stage (over 150 years).展开更多
Natural secondary forest has a strong capacity to regrow naturally and recover biodiversity rapidly on abandoned lands.However,at the neighborhood scale,which can truly reflect the facilitative or competitive interact...Natural secondary forest has a strong capacity to regrow naturally and recover biodiversity rapidly on abandoned lands.However,at the neighborhood scale,which can truly reflect the facilitative or competitive interactions among individual plants,the local diversity spatial structure in secondary forest and the feedback effects of neighborhood diversity on natural regeneration remain unclear,and this may be the key to properly understand the mechanisms of natural secondary forest species diversity recovery.To this end,this study established a dynamic plot in a rehabilitated secondary forest after disturbance and conducted a comprehensive survey of 68,336 individual plants with repeated measurements at 5-year interval to assess the characteristics of neighborhood diversity structure across life history stages and link the neighborhood species richness(NSR)effect translated by species interactions at species diversity structure with individual trees recruitment/mortality in secondary forest regeneration.The results showed that,compared with tropical and temperate natural forests,a higher proportion of diversity accumulators and a lower proportion of repellers in subtropical secondary forests resulted in neighborhood diversity structures characterized by heterospecific or high-diversity patches,which are beneficial to the maintenance or restoration of biodiversity.As an important supplement to the research on the relationship between diversity and productivity,our findings show a positive diversity-survival relationship in subtropical secondary forests.Importantly,we observed that the neighborhood diversity structure exhibited a trend of accumulator-dominated to neutral-dominant changes with life stage from sapling to adult,which,in turn,determined the direction and strength of NSR effects on recruitment/mortality.Specifically,diverse local neighborhoods at a later successional stage characterized with‘neutral’species-species interactions can act as a‘welfare net’by offering favorable microhabitats for the most vulnerable recruitments or saplings,i.e.,the NSR effects that promoted individual recruitment/survival in our study.These results not only enrich our understanding of the biodiversity-productivity-survival relationship but also highlight the importance of retaining latesuccessional species of native trees in intensive forest production or in situ conservation policies.展开更多
In recent years, the various functions required of forests, especially the conservation of biodiversity, have been attracting increasing attention in Japan and worldwide. In Japan, 67% of national land is covered by f...In recent years, the various functions required of forests, especially the conservation of biodiversity, have been attracting increasing attention in Japan and worldwide. In Japan, 67% of national land is covered by forest, 41% of which is artificial forest (i.e., plantations). Therefore, forest biodiversity conservation efforts should also target artificial forests. In this paper, we seek to promote sustainable forest management that considers biodiversity conservation by examining indices that can be used by forest managers to evaluate the diversity of broadleaf trees. The result was that evaluation of broadleaf tree diversity in artificial forests at a basin scale was possible by combining several types of indicators.展开更多
The situation of plants on the slope can reflect the effect of vegetation restoration during the process of artificial vegetation recovery.Taking the typical damaged slope of Wenchuan earthquake area as the research o...The situation of plants on the slope can reflect the effect of vegetation restoration during the process of artificial vegetation recovery.Taking the typical damaged slope of Wenchuan earthquake area as the research object,through observing the vegetation situation of deserted slope,the results show that compositae plants and gramineous plants are suitable for being pioneer plants and dominant in community; during the vegetation succession,many compositae and gramineous species invade,but there is no magaphanerophytes invading; as time goes by,the herbaceous species and diversity increase gradually,so the ecosystem becomes more stable and the gradient is important for the vegetation restoration.展开更多
Habitat plays a critical role in regulating fish community structure. Using the data collected from a monthly trammel net survey in Ma'an archipelago off the east coast of China, we evaluated impacts of five diffe...Habitat plays a critical role in regulating fish community structure. Using the data collected from a monthly trammel net survey in Ma'an archipelago off the east coast of China, we evaluated impacts of five different habitats(artificial reefs, mussel farms, cage aquaculture, rocky reefs and soft bottom) on fish assemblages. This study suggests that artificial reefs(AR) have significantly higher species richness, abundance and diversity than mussel farms(MF) or soft bottom(SB) habitats during most seasons, and that fish taxa in the AR habitats are similar to those in the rocky reef(RR) habitats. Two different fish assemblage patterns were revealed in the study area using non-metric multidimensional scaling ordination: an assemblage dominated by reef fishes(especially by Scorpaenidae species) in AR, RR and cage aquaculture(CA) habitats and an assemblage dominated by Sciaenidae species in MF and SB habitats. We suggest that reef fishes play a key role in differentiating fish community structures in the study area. Although few differences in fish abundance and diversity were found between the CA and SB habitats, a more diverse age structure was observed in the CA habitats. A much more complex fish assemblage and enhanced population of local species were established as a result of the presence of both floating and fixed artificial structures, probably through improved survival rates.展开更多
Asian cultivated rice shows allelic variation in sodium transporter,OsHKT1;5,correlating with shoot sodium exclusion(salinity tolerance).These changes map to intra/extracellularly-oriented loops that occur between fou...Asian cultivated rice shows allelic variation in sodium transporter,OsHKT1;5,correlating with shoot sodium exclusion(salinity tolerance).These changes map to intra/extracellularly-oriented loops that occur between four transmembrane-P loop-transmembrane(MPM)motifs in OsHKT1;5.HKT1;5 sequences from more recently evolved Oryza species(O.sativa/O.officinalis complex species)contain two expansions that involve two intracellularly oriented loops/helical regions between MPM domains,potentially governing transport characteristics,while more ancestral HKT1;5 sequences have shorter intracellular loops.We compared homology models for homoeologous OcHKT 1;5-K and OcHKT1;5-L from halophytic O.coarctata to identify complementary amino acid residues in OcHKT1;5-L that potentially enhance affinity for Na+.Using haplotyping,we showed that Asian cultivated rice accessions only have a fraction of HKT1;5 diversity available in progenitor wild rice species(O.nivara and O.rufipogon).Progenitor HKT1;5 haplotypes can thus be used as novel potential donors for enhancing cultivated rice salinity tolerance.Within Asian rice accessions,10 non-synonymous HKT1;5 haplotypic groups occur.More HKT1;5 haplotypic diversities occur in cultivated indica gene pool compared to japonica.Predominant Haplotypes 2 and 10 occur in mutually exclusive japonica and indica groups,corresponding to haplotypes in O.sativa salt-sensitive and salt-tolerant landraces,respectively.This distinct haplotype partitioning may have originated in separate ancestral gene pools of indica and japonica,or from different haplotypes selected during domestication.Predominance of specific HKT1;5 haplotypes within the 3000 rice dataset may relate to eco-physiological fitness in specific geo-climatic and/or edaphic contexts.展开更多
Knowledge about plant diversity along disturbance gradients is essential for conservation and management of fragmented coastal habitats.This study examined the effects of human disturbance intensity in coastal habitat...Knowledge about plant diversity along disturbance gradients is essential for conservation and management of fragmented coastal habitats.This study examined the effects of human disturbance intensity in coastal habitats of Kuwait on diversity,composition,identity and assemblage of vascular plant species.Plant survey data from 113 plots (5m×5m each) were randomly selected in 51 sites at coastal fragmented habitats at three levels of disturbance intensities (high,moderate and low) and were statistically analyzed.The results revealed that about 76% of the recorded species are considered threatened species in Kuwait,most of which are being lost in high disturbed habitats.Disturbance led to the dominance of Zygophyllum qatarense,Cornulaca aucheri and Salsola imbricata,which are species of disturbance indicators.Richness,total plant cover and species diversity were higher in moderate and low disturbed habitats than in high disturbed habitats.Beta diversity between high and low disturbed habitats was higher than either between high and moderate,or between moderate and low disturbed habitats.Cluster analyses showed statistically significant differences in composition of plant assemblages,which indicate high beta diversity between the habitat types.Intensive urbanization and industrialization are among the most serious threats that contribute to declines in biological diversity and rapid fragmentation of coastal habitats in Kuwait.Establishing protective enclosures in the disturbed habitats,planting endangered and vulnerable species,and establishing a natural reserve at Nuwaiseeb are recommended conservation actions to avoid loss of the fragmented coastal habitats and to facilitate restoration of native plants.展开更多
基金This item was supportedby the National ScienceFoundationof P.R.China (No.39330040,39460022)
文摘Evergreen broad-leaved forestis one of the most important vegetation types in China.Because of the human activities,evergreen broad-leaved forest has been destroyed extensively,leading to degraded ecosystem.It is urgent to conserve and restore these natural forests in China. In this paper,the tendency and rate of species diversity restoration of the evergreen broad-leaved forest in Daming Mountain has been studied.The main resultsare as follows:(a)In subtropical mid-mountain area,species diversity in degraded evergreen broad-leaved forestcan be restored. Through analyzing b diversity index of communities in different time and space,it was found that the species composition of communities tend to be the same as that in the zonal evergreen broad-leaved forest.(b)The restoration rate of evergreen broad-leaved forest was very fast.Planting Chinese fir after clear-cutting and controlled burning of the forest,178 species appeared in a 600m^2 sample area after 20 years’natural recovering.Among the sespecies,58 were tree layer and the height of community reached 18m.The survey suggested that it would take only 20 years for the degraded forest to develop into community composed of lightdemanding broad-leaved pioneer trees and min-tolerance broad-leaved trees,and it need another 40~80 years to reach the stage consisting of min-tolerance evergreen broad-leaved trees.(c)Species number increased quickly at the early stage(2-20years)during vegetation recovering process toward the climax,and decreased at the min-stage (50-60 years),then maintained a relatively stable level at the late-stage (over 150 years).
基金supported by the Innovative Team Project of Nanjing Institute of Environmental Sciences,MEECentral Public Welfare Scientific Institution Basal Research Fund,Ministry of Finance and Ministry of Ecology and Environment of China(Nos.GYZX210302,GYZX200203):Biodiversity Survey,Observation and Assessment Program of Ministry of Ecology and Environment of China+2 种基金The National Environmental Protection Public Welfare Industry Targeted Research Fund:Research and demonstration of key technologies for dynamic supervision of nature reserves(No.201509042)The Special Foundation for National Science and Technology Basic Resources Investigation of China(No.2019FY202300)The Jiangsu Postdoctoral Research Funding Program(No.2021K038A)。
文摘Natural secondary forest has a strong capacity to regrow naturally and recover biodiversity rapidly on abandoned lands.However,at the neighborhood scale,which can truly reflect the facilitative or competitive interactions among individual plants,the local diversity spatial structure in secondary forest and the feedback effects of neighborhood diversity on natural regeneration remain unclear,and this may be the key to properly understand the mechanisms of natural secondary forest species diversity recovery.To this end,this study established a dynamic plot in a rehabilitated secondary forest after disturbance and conducted a comprehensive survey of 68,336 individual plants with repeated measurements at 5-year interval to assess the characteristics of neighborhood diversity structure across life history stages and link the neighborhood species richness(NSR)effect translated by species interactions at species diversity structure with individual trees recruitment/mortality in secondary forest regeneration.The results showed that,compared with tropical and temperate natural forests,a higher proportion of diversity accumulators and a lower proportion of repellers in subtropical secondary forests resulted in neighborhood diversity structures characterized by heterospecific or high-diversity patches,which are beneficial to the maintenance or restoration of biodiversity.As an important supplement to the research on the relationship between diversity and productivity,our findings show a positive diversity-survival relationship in subtropical secondary forests.Importantly,we observed that the neighborhood diversity structure exhibited a trend of accumulator-dominated to neutral-dominant changes with life stage from sapling to adult,which,in turn,determined the direction and strength of NSR effects on recruitment/mortality.Specifically,diverse local neighborhoods at a later successional stage characterized with‘neutral’species-species interactions can act as a‘welfare net’by offering favorable microhabitats for the most vulnerable recruitments or saplings,i.e.,the NSR effects that promoted individual recruitment/survival in our study.These results not only enrich our understanding of the biodiversity-productivity-survival relationship but also highlight the importance of retaining latesuccessional species of native trees in intensive forest production or in situ conservation policies.
文摘In recent years, the various functions required of forests, especially the conservation of biodiversity, have been attracting increasing attention in Japan and worldwide. In Japan, 67% of national land is covered by forest, 41% of which is artificial forest (i.e., plantations). Therefore, forest biodiversity conservation efforts should also target artificial forests. In this paper, we seek to promote sustainable forest management that considers biodiversity conservation by examining indices that can be used by forest managers to evaluate the diversity of broadleaf trees. The result was that evaluation of broadleaf tree diversity in artificial forests at a basin scale was possible by combining several types of indicators.
基金Supported by The Balanced Fertilization Technology of the Main Fast-growing Trees in Sichuan Province(JB201412)
文摘The situation of plants on the slope can reflect the effect of vegetation restoration during the process of artificial vegetation recovery.Taking the typical damaged slope of Wenchuan earthquake area as the research object,through observing the vegetation situation of deserted slope,the results show that compositae plants and gramineous plants are suitable for being pioneer plants and dominant in community; during the vegetation succession,many compositae and gramineous species invade,but there is no magaphanerophytes invading; as time goes by,the herbaceous species and diversity increase gradually,so the ecosystem becomes more stable and the gradient is important for the vegetation restoration.
基金supported by the National High Technology Research and Development Program of China (863 Program, No. 2006AA100303)the National Basic Research Program of China (No. 2011CB111608)partially supported by the Maine Sea Grant College Program at the University of Maine in the USA
文摘Habitat plays a critical role in regulating fish community structure. Using the data collected from a monthly trammel net survey in Ma'an archipelago off the east coast of China, we evaluated impacts of five different habitats(artificial reefs, mussel farms, cage aquaculture, rocky reefs and soft bottom) on fish assemblages. This study suggests that artificial reefs(AR) have significantly higher species richness, abundance and diversity than mussel farms(MF) or soft bottom(SB) habitats during most seasons, and that fish taxa in the AR habitats are similar to those in the rocky reef(RR) habitats. Two different fish assemblage patterns were revealed in the study area using non-metric multidimensional scaling ordination: an assemblage dominated by reef fishes(especially by Scorpaenidae species) in AR, RR and cage aquaculture(CA) habitats and an assemblage dominated by Sciaenidae species in MF and SB habitats. We suggest that reef fishes play a key role in differentiating fish community structures in the study area. Although few differences in fish abundance and diversity were found between the CA and SB habitats, a more diverse age structure was observed in the CA habitats. A much more complex fish assemblage and enhanced population of local species were established as a result of the presence of both floating and fixed artificial structures, probably through improved survival rates.
基金supported by the Department of Biotechnology,Government of India(Grant No.BT/PR11396/NDB/52/118/2008)and Council for Scientific and Industrial Research,India for Senior Research Fellowship(Grant No.09/656(0018)/2016-EMR-1)to Shalini PULIPATIfunding and support provided by JC Bose Fellowship(Grant No.SB/S2/JC-071/2015)from Science and Engineering Research Board,India and Bioinformatics Centre Grant funded by Department of Biotechnology,India(Grant No.BT/PR40187/BTIS/137/9/2021)。
文摘Asian cultivated rice shows allelic variation in sodium transporter,OsHKT1;5,correlating with shoot sodium exclusion(salinity tolerance).These changes map to intra/extracellularly-oriented loops that occur between four transmembrane-P loop-transmembrane(MPM)motifs in OsHKT1;5.HKT1;5 sequences from more recently evolved Oryza species(O.sativa/O.officinalis complex species)contain two expansions that involve two intracellularly oriented loops/helical regions between MPM domains,potentially governing transport characteristics,while more ancestral HKT1;5 sequences have shorter intracellular loops.We compared homology models for homoeologous OcHKT 1;5-K and OcHKT1;5-L from halophytic O.coarctata to identify complementary amino acid residues in OcHKT1;5-L that potentially enhance affinity for Na+.Using haplotyping,we showed that Asian cultivated rice accessions only have a fraction of HKT1;5 diversity available in progenitor wild rice species(O.nivara and O.rufipogon).Progenitor HKT1;5 haplotypes can thus be used as novel potential donors for enhancing cultivated rice salinity tolerance.Within Asian rice accessions,10 non-synonymous HKT1;5 haplotypic groups occur.More HKT1;5 haplotypic diversities occur in cultivated indica gene pool compared to japonica.Predominant Haplotypes 2 and 10 occur in mutually exclusive japonica and indica groups,corresponding to haplotypes in O.sativa salt-sensitive and salt-tolerant landraces,respectively.This distinct haplotype partitioning may have originated in separate ancestral gene pools of indica and japonica,or from different haplotypes selected during domestication.Predominance of specific HKT1;5 haplotypes within the 3000 rice dataset may relate to eco-physiological fitness in specific geo-climatic and/or edaphic contexts.
文摘Knowledge about plant diversity along disturbance gradients is essential for conservation and management of fragmented coastal habitats.This study examined the effects of human disturbance intensity in coastal habitats of Kuwait on diversity,composition,identity and assemblage of vascular plant species.Plant survey data from 113 plots (5m×5m each) were randomly selected in 51 sites at coastal fragmented habitats at three levels of disturbance intensities (high,moderate and low) and were statistically analyzed.The results revealed that about 76% of the recorded species are considered threatened species in Kuwait,most of which are being lost in high disturbed habitats.Disturbance led to the dominance of Zygophyllum qatarense,Cornulaca aucheri and Salsola imbricata,which are species of disturbance indicators.Richness,total plant cover and species diversity were higher in moderate and low disturbed habitats than in high disturbed habitats.Beta diversity between high and low disturbed habitats was higher than either between high and moderate,or between moderate and low disturbed habitats.Cluster analyses showed statistically significant differences in composition of plant assemblages,which indicate high beta diversity between the habitat types.Intensive urbanization and industrialization are among the most serious threats that contribute to declines in biological diversity and rapid fragmentation of coastal habitats in Kuwait.Establishing protective enclosures in the disturbed habitats,planting endangered and vulnerable species,and establishing a natural reserve at Nuwaiseeb are recommended conservation actions to avoid loss of the fragmented coastal habitats and to facilitate restoration of native plants.