期刊文献+
共找到1,451篇文章
< 1 2 73 >
每页显示 20 50 100
A Novel Approach to Energy Optimization:Efficient Path Selection in Wireless Sensor Networks with Hybrid ANN
1
作者 Muhammad Salman Qamar Ihsan ulHaq +3 位作者 Amil Daraz Atif MAlamri Salman A.AlQahtani Muhammad Fahad Munir 《Computers, Materials & Continua》 SCIE EI 2024年第5期2945-2970,共26页
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Senso... In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable operation.WSN data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network traversal.The mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring RPs.The unique determination of this study is the shortest path to reach RPs.As the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static sinks.In this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the MS.Both methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide coverage.In addition,a method of using MS scheduling for efficient data collection is provided.Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators. 展开更多
关键词 Wireless Sensor networks(WSNs) mobile sink(MS) rendezvous point(RP) machine learning Artificial Neural networks(anns)
下载PDF
Application of ArtificialNeural Network to Real-Time Condition Monitoring Control and Usual Trouble Diagnosis during Driling
2
《Journal of Earth Science》 SCIE CAS CSCD 1997年第2期63-66,共4页
ApplicationofArtificialNeuralNetworktoReal┐TimeConditionMonitoringControlandUsualTroubleDiagnosisduringDrili... ApplicationofArtificialNeuralNetworktoReal┐TimeConditionMonitoringControlandUsualTroubleDiagnosisduringDriling*ShiYushengDepa... 展开更多
关键词 network to CONTROL MONITORING TROUBLE Usual APPLICATION artificialneural
下载PDF
基于ANN和XGB算法的锈蚀钢筋混凝土高温粘结强度预测方法
3
作者 刘廷滨 黄滔 +3 位作者 欧嘉祥 李云霞 艾岩 任正熹 《工程力学》 EI CSCD 北大核心 2024年第S01期300-309,共10页
为准确评估锈蚀钢筋混凝土(CRC)结构在突发火灾下的结构承载力,锈蚀钢筋混凝土高温粘结强度的统一预测方法研究亟待开展。然而,粘结退化机理复杂,粘结因素众多,实验方法不能考虑所有粘结因素的相关复杂关系的影响。在现有大量试验数据... 为准确评估锈蚀钢筋混凝土(CRC)结构在突发火灾下的结构承载力,锈蚀钢筋混凝土高温粘结强度的统一预测方法研究亟待开展。然而,粘结退化机理复杂,粘结因素众多,实验方法不能考虑所有粘结因素的相关复杂关系的影响。在现有大量试验数据的基础上,采用机器学习方法可以有效地通过数据建立输入和输出特征之间的回归关系。该文利用ANN和XGB两种机器学习算法建立了一个统一的锈蚀钢筋混凝土高温粘结强度预测模型。基于612组高温锈蚀钢筋混凝土的试验研究数据,进行模型训练和测试。结果表明:ML模型的预测结果与实验结果十分吻合。此外,针对机器学习算法本身存在的黑盒子问题,使用SHAP方法来解决锈蚀钢筋混凝土高温粘结强度预测过程中的模型可解释性问题。同时,还将ML模型的计算结果与三种理论计算公式的结果进行了比较,结果表明:ML模型具有明显的优势。新构建的混合机器学习模型很有可能成为准确评估CRC结构经受高温后的损伤程度问题的新选择。 展开更多
关键词 人工神经网络(ann) 极端梯度提升树(XGB) 锈蚀钢筋混凝土 高温粘结强度 SHAP方法
下载PDF
基于GA改进ANN算法的车载网控系统故障诊断 被引量:1
4
作者 杨慧荣 《山西电子技术》 2024年第1期16-18,共3页
车载网控系统是保证运行安全的一类重要控制设备,也是确保系统稳定运行的核心部件。为了提高车载网控系统故障诊断效率,通过遗传算法(GA)具有的全局寻优功能来实现对神经网络初始阈值与权值的优化,把寻优结果代到神经网络内完成训练过程... 车载网控系统是保证运行安全的一类重要控制设备,也是确保系统稳定运行的核心部件。为了提高车载网控系统故障诊断效率,通过遗传算法(GA)具有的全局寻优功能来实现对神经网络初始阈值与权值的优化,把寻优结果代到神经网络内完成训练过程;使ANN泛化方法具有的映射性能获得充分利用可以防止产生局部极小值情况,获得更高的分类精度;利用实例分析方式测试车载故障诊断过程的有效性。研究结果表明:采用GA改进ANN算法可以有效优化平均误差及数据正确率,有效降低迭代次数,表明可以通过GA改进ANN方法来提升神经网络运算性能。经过遗传算法优化处理的ANN在训练过程中可以获得比初始ANN更快时收敛速率。 展开更多
关键词 车载网控系统 故障诊断 遗传算法 ann 有效性 分类精度
下载PDF
An Efficient and Robust Fall Detection System Using Wireless Gait Analysis Sensor with Artificial Neural Network (ANN) and Support Vector Machine (SVM) Algorithms 被引量:2
5
作者 Bhargava Teja Nukala Naohiro Shibuya +5 位作者 Amanda Rodriguez Jerry Tsay Jerry Lopez Tam Nguyen Steven Zupancic Donald Yu-Chun Lie 《Open Journal of Applied Biosensor》 2014年第4期29-39,共11页
In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Ga... In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively. 展开更多
关键词 Artificial Neural network (ann) Back Propagation FALL Detection FALL Prevention GAIT Analysis SENSOR Support Vector Machine (SVM) WIRELESS SENSOR
下载PDF
基于BP-ANN与RBF-ANN的钢筋与混凝土黏结强度预测模型研究 被引量:2
6
作者 李涛 刘喜 +1 位作者 李振军 赵小琴 《南京工业大学学报(自然科学版)》 CAS 北大核心 2024年第1期112-118,共7页
为研究神经网络对钢筋与混凝土黏结强度的预测能力以及神经网络的输出性能,基于大量的试验数据,提出一种基于改进神经网络的变形钢筋与混凝土黏结强度预测模型,对混凝土结构的研究与实际工程应用均有着重要的意义。收集290组黏结锚固试... 为研究神经网络对钢筋与混凝土黏结强度的预测能力以及神经网络的输出性能,基于大量的试验数据,提出一种基于改进神经网络的变形钢筋与混凝土黏结强度预测模型,对混凝土结构的研究与实际工程应用均有着重要的意义。收集290组黏结锚固试验数据,引入基于反向传播人工神经网络(BP-ANN)与径向基函数神经网络(RBF-ANN)算法,揭示混凝土强度、保护层厚度、钢筋直径、锚固长度及配箍率对变形钢筋与混凝土黏结性能的影响规律,建立基于改进神经网络算法的钢筋与混凝土黏结强度预测模型。对比分析不同数据预处理方法和训练神经元个数对建议模型预测结果的影响,评估各经典模型与建议模型的预测精度和离散性,提出临界锚固长度计算公式。结果表明:BP-ANN预测值与试验值比值的均值、标准差及变异系数分别为1.009、0.188、0.86,其预测精度略高于RBF-ANN;建议模型能够更准确、更稳定地预测钢筋与混凝土的黏结强度,该方法为解决钢筋与混凝土黏结问题提供了新思路。 展开更多
关键词 钢筋混凝土 黏结强度 改进神经网络 影响参数 预测模型 黏结锚固试验 BP-ann RBF-ann
下载PDF
THE LOGIC CONSERVATION OF COMPOSITIONS BETWEEN PANWEIGHTED NETWORKS AND PANWEIGHTED FIELDS AND THEIR APPLICATION IN ANN
7
作者 吴陈 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第7期118-121,共4页
In this paper, several definitions of composing panweighted networks and panweighted fields are given, a group of theorems about the logic conservation of compositions between panweighted networks and panweighted fiel... In this paper, several definitions of composing panweighted networks and panweighted fields are given, a group of theorems about the logic conservation of compositions between panweighted networks and panweighted fields are proved. By combining the average field model, the future application of panweighted networks and panweighted fields in ANN is discussed. 展开更多
关键词 pansystems methodology artificial neural network (ann) systems theory
下载PDF
Optimization of the Conceptual Model of Green-Ampt Using Artificial Neural Network Model (ANN) and WMS to Estimate Infiltration Rate of Soil (Case Study: Kakasharaf Watershed, Khorram Abad, Iran)
8
作者 Ali Haghizadeh Leila Soleimani Hossein Zeinivand 《Journal of Water Resource and Protection》 2014年第5期473-480,共8页
Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing ... Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing water sources. Therefore different types of models with various degrees of complexity were developed to reach this aim. Most of the estimating methods of soil infiltration are expensive and time consuming and these methods estimate infiltration with hypothesis of zero slope. One of the conceptual and physical models for estimating soil infiltration is Green-Ampt model which is similar to Richard model. This model uses slope factor in estimating infiltration and this is the power point of Green-Ampt model. In this research the empirical model of Green-Ampt was optimized with integrating artificial neural network model (ANN) and a model of geographical information system WMS to estimate the infiltration in Kakasharaf watershed. Results of the comparison between the output of this method and real value of infiltration in region (through multiple cylinders) showed that this method can estimate the infiltration rate of Kakasharaf watershed with low error and acceptable accuracy (Nash-Sutcliff performance coefficient 0.821, square error 0.216, correlation coefficient 0.905 and model error 0.024). 展开更多
关键词 INFILTRATION Green-Ampt Empirical MODEL WMS MODEL Artificial Neural network MODEL (ann)
下载PDF
Predicting pollutant removal in constructed wetlands using artificial neural networks(ANNs)
9
作者 Christopher Kiiza Shun-qi Pan +1 位作者 Bettina Bockelmann-Evans Akintunde Babatunde 《Water Science and Engineering》 EI CAS CSCD 2020年第1期14-23,共10页
Growth in urban population,urbanisation,and economic development has increased the demand for water,especially in water-scarce regions.Therefore,sustainable approaches to water management are needed to cope with the e... Growth in urban population,urbanisation,and economic development has increased the demand for water,especially in water-scarce regions.Therefore,sustainable approaches to water management are needed to cope with the effects of the urbanisation on the water environment.This study aimed to design novel configurations of tidal-flow vertical subsurface flow constructed wetlands(VFCWs)for treating urban stormwater.A series of laboratory experiments were conducted with semi-synthetic influent stormwater to examine the effects of the design and operation variables on the performance of the VFCWs and to identify optimal design and operational strategies,as well as maintenance requirements.The results show that the VFCWs can significantly reduce pollutants in urban stormwater,and that pollutant removal was related to specific VFCW designs.Models based on the artificial neural network(ANN)method were built using inputs derived from data exploratory techniques,such as analysis of variance(ANOVA)and principal component analysis(PCA).It was found that PCA reduced the dimensionality of input variables obtained from different experimental design conditions.The results show a satisfactory generalisation for predicting nitrogen and phosphorus removal with fewer variable inputs,indicating that monitoring costs and time can be reduced. 展开更多
关键词 CONSTRUCTED WETLANDS Urban STORMWATER POLLUTANT removal Artificial neural networks(anns) Principal component analysis(PCA)
下载PDF
Design of ANN Based Non-Linear Network Using Interconnection of Parallel Processor
10
作者 Anjani Kumar Singha Swaleha Zubair +3 位作者 Areej Malibari Nitish Pathak Shabana Urooj Neelam Sharma 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3491-3508,共18页
Suspicious mass traffic constantly evolves,making network behaviour tracing and structure more complex.Neural networks yield promising results by considering a sufficient number of processing elements with strong inte... Suspicious mass traffic constantly evolves,making network behaviour tracing and structure more complex.Neural networks yield promising results by considering a sufficient number of processing elements with strong interconnections between them.They offer efficient computational Hopfield neural networks models and optimization constraints used by undergoing a good amount of parallelism to yield optimal results.Artificial neural network(ANN)offers optimal solutions in classifying and clustering the various reels of data,and the results obtained purely depend on identifying a problem.In this research work,the design of optimized applications is presented in an organized manner.In addition,this research work examines theoretical approaches to achieving optimized results using ANN.It mainly focuses on designing rules.The optimizing design approach of neural networks analyzes the internal process of the neural networks.Practices in developing the network are based on the interconnections among the hidden nodes and their learning parameters.The methodology is proven best for nonlinear resource allocation problems with a suitable design and complex issues.The ANN proposed here considers more or less 46k nodes hidden inside 49 million connections employed on full-fledged parallel processors.The proposed ANN offered optimal results in real-world application problems,and the results were obtained using MATLAB. 展开更多
关键词 Artificial neural network(ann) MULTIPROCESSOR hidden node nonlinear optimization parallel processing
下载PDF
Classified VPN Network Traffic Flow Using Time Related to Artificial Neural Network
11
作者 Saad Abdalla Agaili Mohamed Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第7期819-841,共23页
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and c... VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions. 展开更多
关键词 VPN network traffic flow ann classification intrusion detection data exfiltration encrypted traffic feature extraction network security
下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
12
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(anns) evolutionary algorithm hybrid identification model
下载PDF
通过分区间移位实现高效ANN-SNN转换
13
作者 黄志鹏 《福建电脑》 2024年第12期8-13,共6页
SNN因其在神经形态芯片中的高能效优势而受到广泛关注。ANN-SNN转换是实现深度SNN的主流方法之一,但在极低延迟下,死神经元脉冲误差导致目标SNN与源ANN之间存在性能差距。为解决死神经元脉冲误差,实现高性能低延迟SNN,本文提出了一种分... SNN因其在神经形态芯片中的高能效优势而受到广泛关注。ANN-SNN转换是实现深度SNN的主流方法之一,但在极低延迟下,死神经元脉冲误差导致目标SNN与源ANN之间存在性能差距。为解决死神经元脉冲误差,实现高性能低延迟SNN,本文提出了一种分区间移位激活函数,用于替代传统的ReLU激活函数。实验结果表明,在CIFAR-10数据集上,本文方法得到的SNN仅需4个时间步即可达到94.78%的Top-1准确率。 展开更多
关键词 脉冲神经网络 ann-SNN转换 分区间移位 ReLU激活函数
下载PDF
基于AHP和ANN的网络安全综合评价方法研究 被引量:29
14
作者 许福永 申健 李剑英 《计算机工程与应用》 CSCD 北大核心 2005年第29期127-129,共3页
网络安全评价是一项复杂的系统工程。论文采用层次分析法(AHP),对影响网络安全的各种因素进行了深入研究,确立了网络安全综合评价指标体系,提出了人工神经网络(ANN)安全评价模型,为全面评价计算机网络安全状况提供了新的思路和方法。
关键词 网络安全 安全评价 层次分析法 人工神经网络
下载PDF
基于ANN与GIS技术的区域岩溶塌陷稳定性预测——以桂林西城区为例 被引量:20
15
作者 胡成 陈植华 陈学军 《地球科学(中国地质大学学报)》 EI CAS CSCD 北大核心 2003年第5期557-562,共6页
岩溶地面塌陷是岩溶区常见的一种地质灾害,塌陷区域预测是进行国土规划、资源开发与灾害防治的必要工作.由于岩溶塌陷的影响因素众多且相互作用,发展过程复杂,加之各评价因子的数值获取困难,致使长期以来塌陷区域定量预测成为一个难以... 岩溶地面塌陷是岩溶区常见的一种地质灾害,塌陷区域预测是进行国土规划、资源开发与灾害防治的必要工作.由于岩溶塌陷的影响因素众多且相互作用,发展过程复杂,加之各评价因子的数值获取困难,致使长期以来塌陷区域定量预测成为一个难以解决的课题.现行的区域预测模型不能描述塌陷形成模式的非线性特征,也难以克服评价因子权重确定过程中人为经验因素的影响.神经网络技术的自学习、自适应与高度非线性映射特点显示了其在塌陷区域预测领域中应用的前景.根据研究区内地面塌陷空间聚集分布的特征,提出了不同因子组合条件下塌陷发生可能性的定量化方法,结合选定的评价因子类别确定了神经网络预测模型的结构,利用312个塌陷点样本中的292个进行网络训练,余下的20个样本的校验结果表明该模型具有较高的可信度.运用GIS技术将研究区进行评价单元划分,并获取各评价因子的取值,输入到训练好的网络中进行预测.将各单元的输出值进行归并处理后得到研究区岩溶塌陷的稳定级分区图. 展开更多
关键词 岩溶塌陷 人工神经网络 非线性 预测模型 GIS
下载PDF
基于ANN的煤层顶板导水断裂带高度预测 被引量:20
16
作者 马亚杰 李建民 +1 位作者 郭立稳 宋恩春 《煤炭学报》 EI CAS CSCD 北大核心 2007年第9期926-929,共4页
为预测煤矿顶板导水断裂带的最大高度,分析了顶板导水断裂带发育的影响因素,提取了10个指标形成裂高预测指标体系,并收集整理了近10 a来我国24项裂高观测数据,建立了样本数据库.基于BP人工神经网络的理论及方法,建立了煤层开采工作面顶... 为预测煤矿顶板导水断裂带的最大高度,分析了顶板导水断裂带发育的影响因素,提取了10个指标形成裂高预测指标体系,并收集整理了近10 a来我国24项裂高观测数据,建立了样本数据库.基于BP人工神经网络的理论及方法,建立了煤层开采工作面顶板导水断裂带高度预测模型,模型检验成功.依据计算权值,分析了各指标对裂高的影响程度,提出工作面倾斜长度、埋深对裂高影响较大并加以解释. 展开更多
关键词 人工神经网络 导水断裂带高度 预测
下载PDF
基于ANN的离心式水泵特性曲线拟合方法研究 被引量:8
17
作者 许景辉 何东健 张成凤 《水力发电》 北大核心 2005年第6期38-40,共3页
如何精确地绘制和应用特性曲线对生产产家和用户都有十分重要的实际意义。针对传统特性曲线绘制方法的不足,提出了用ANN拟合离心式水泵特性曲线以提高特性曲线绘制精度,解决数值泛化等问题的新方法。通过应用BP网络对特性曲线的拟合研究... 如何精确地绘制和应用特性曲线对生产产家和用户都有十分重要的实际意义。针对传统特性曲线绘制方法的不足,提出了用ANN拟合离心式水泵特性曲线以提高特性曲线绘制精度,解决数值泛化等问题的新方法。通过应用BP网络对特性曲线的拟合研究,对应用ANN拟合特性曲线的方法、特点等进行了分析。 展开更多
关键词 ann 离心泵 BP网络 特性曲线
下载PDF
基于ANN的变电站电压和无功综合自动控制 被引量:56
18
作者 杨争林 孙雅明 《电力系统自动化》 EI CSCD 北大核心 1999年第13期10-13,共4页
首次提出一种基于人工神经网络的无功预测和优化决策相结合的变电站电压和无功综合控制策略。根据电压发生变化的原因和变化趋势确定综合控制策略,该策略的有效性在于预测指导,将变压器分接头的调节次数降低到最少。仿真测试证明了预... 首次提出一种基于人工神经网络的无功预测和优化决策相结合的变电站电压和无功综合控制策略。根据电压发生变化的原因和变化趋势确定综合控制策略,该策略的有效性在于预测指导,将变压器分接头的调节次数降低到最少。仿真测试证明了预期的效果。在该系统中还构造了控制决策神经网络模型,可实现组合优化控制策略的灵活性。 展开更多
关键词 变电站 ann 电压 无功功率 自动控制 电力系统
下载PDF
干旱内陆区自然-人工条件下地下水位动态的ANN模型 被引量:22
19
作者 冯绍元 霍再林 +1 位作者 康绍忠 陈绍军 《水利学报》 EI CSCD 北大核心 2007年第7期873-878,885,共7页
根据我国干旱内陆区自然-人工条件下地下水系统的特点,建立了甘肃省石羊河流域下游地下水位动态的人工神经网络模型,采用附加动量法和学习速率自适应调整策略对反向传播算法(BP)进行改造,以提高计算速度。该模型以前期地下水位、降雨量... 根据我国干旱内陆区自然-人工条件下地下水系统的特点,建立了甘肃省石羊河流域下游地下水位动态的人工神经网络模型,采用附加动量法和学习速率自适应调整策略对反向传播算法(BP)进行改造,以提高计算速度。该模型以前期地下水位、降雨量、蒸发量、地表来水量、灌溉面积、灌水定额、人口数量作为输入变量,采用缺省因子检验法分析了上述各个因子对地下水位影响的敏感性,模拟了不同灌溉发展面积及地表来水条件下地下水位动态。结果表明:研究区人类活动及地表来水是影响地下水位动态的主要因子,灌溉面积的扩大及地表来水的减少会使地下水位持续下降。模型具有较高的精度,可以较好地定量描述地下水位动态与上述各因子之间的响应关系;研究结果可应用于该地区地下水系统的管理。 展开更多
关键词 人工神经网络 石羊河流域 自然-人工条件 地下水动态模拟
下载PDF
基于GA-ANN改进的空气质量预测模型 被引量:20
20
作者 赵宏 刘爱霞 +1 位作者 王恺 白志鹏 《环境科学研究》 EI CAS CSCD 北大核心 2009年第11期1276-1281,共6页
基于人工神经网络的空气质量预测模型优于传统的逐步回归模型,但由于性能差异不明显而较少在空气质量预报中应用.设计了将遗传算法和神经网络算法相结合的基于GA-ANN的空气质量预测模型,并利用天津市2003—2007年气象和污染物监测资料... 基于人工神经网络的空气质量预测模型优于传统的逐步回归模型,但由于性能差异不明显而较少在空气质量预报中应用.设计了将遗传算法和神经网络算法相结合的基于GA-ANN的空气质量预测模型,并利用天津市2003—2007年气象和污染物监测资料对该模型进行验证.对2007年全年的ρ(SO2),ρ(NO2)和ρ(PM10)进行预测,预测值与实测值的相关系数分别为0.899 6,0.828 3和0.600 0.与一般的人工神经网络预测模型相比较,GA-ANN模型将空气质量等级预报的准确率从77.57%提高到79.67%.GA-ANN模型可结合其他方法进行日常空气质量预报. 展开更多
关键词 遗传算法 神经网络 空气质量预测 空气污染指数
下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部