A kind of novel heat-resistant, high performance engineering thermoplastic phthalazinone poly(aryl ether sulfone ketone) (PPESK) containing a carboxyl group in its side chain was prepared by the nucleophilic displacem...A kind of novel heat-resistant, high performance engineering thermoplastic phthalazinone poly(aryl ether sulfone ketone) (PPESK) containing a carboxyl group in its side chain was prepared by the nucleophilic displacement reaction of 4-(4-hydroxylphenyl)- 1 (2H)-phthalazinone with di(4-chlorophenyl) sulfone, 4,4'-difluoro-benzophenone and phenolphthalin in sulfolane in the presence of K2CO3 to produce high molecular weight polymers which can be dissolved in some polar solvents such as chloroform and nitrobenzene at room temperature and can be easily cast into flexible, yellowish and transparent films. PPESK is an amorphous polymer having a decomposition temperature above 400degreesC, which indicates that it has high thermal stability. At the same time, the thermal properties of PPESKs with dicyandiamide (DICY) as curing agent indicated that the heat-resistance properties of the PPESKs are improved after curing. The apparent activation energy (A-E) of the cross-linking reaction and the reaction order (n) of PPESK/DICY were found to be 52.2 kJ/mol and ca. 1.0, respectively. Therefore, the cross-linking reaction is approximately a first order reaction.展开更多
High performance polymers have received considerable attention over the past decade owing to their increased demands as replacements for metals or ceramics in automotive, aerospace, and microelectronic industries. Pol...High performance polymers have received considerable attention over the past decade owing to their increased demands as replacements for metals or ceramics in automotive, aerospace, and microelectronic industries. Poly(aryl ether ketone)s(PAEKs) are a class of important high-performance aromatic polymers with excellent mechanical properties, good solvent resistance, size-accuracy, electrical characteristics, and superior thermal stability. However,展开更多
Two novel poly(aryl ether ketone)s based on (3 methyl)phenylhydroquinone were synthesized via aromatic nucleophilic substitution reaction. The high molecular polymers were easily obtained because of the high reaction ...Two novel poly(aryl ether ketone)s based on (3 methyl)phenylhydroquinone were synthesized via aromatic nucleophilic substitution reaction. The high molecular polymers were easily obtained because of the high reaction activity of bisphenol monomer. The traces of DSC showed that the T gs of m TPEEK and m TPEEKK were 421 and 432 K, respectively. The two polymers exhibit a high thermal stability and good solubility. The transparent and flexible films were readily prepared with chloroform solution. The film of m TPEEK had a low dielectric constant( ε =2 7).展开更多
基金This project was supported by the National Ninth Five-Year-Plan Key Project "The pilot-scale production and the applied development of polyaryl ether concerning phthalazinone moiety" (No. 97-564-01-07).
文摘A kind of novel heat-resistant, high performance engineering thermoplastic phthalazinone poly(aryl ether sulfone ketone) (PPESK) containing a carboxyl group in its side chain was prepared by the nucleophilic displacement reaction of 4-(4-hydroxylphenyl)- 1 (2H)-phthalazinone with di(4-chlorophenyl) sulfone, 4,4'-difluoro-benzophenone and phenolphthalin in sulfolane in the presence of K2CO3 to produce high molecular weight polymers which can be dissolved in some polar solvents such as chloroform and nitrobenzene at room temperature and can be easily cast into flexible, yellowish and transparent films. PPESK is an amorphous polymer having a decomposition temperature above 400degreesC, which indicates that it has high thermal stability. At the same time, the thermal properties of PPESKs with dicyandiamide (DICY) as curing agent indicated that the heat-resistance properties of the PPESKs are improved after curing. The apparent activation energy (A-E) of the cross-linking reaction and the reaction order (n) of PPESK/DICY were found to be 52.2 kJ/mol and ca. 1.0, respectively. Therefore, the cross-linking reaction is approximately a first order reaction.
基金Supported by the National High Technology Research and Development Program of China(No.2006AA03Z543).
文摘High performance polymers have received considerable attention over the past decade owing to their increased demands as replacements for metals or ceramics in automotive, aerospace, and microelectronic industries. Poly(aryl ether ketone)s(PAEKs) are a class of important high-performance aromatic polymers with excellent mechanical properties, good solvent resistance, size-accuracy, electrical characteristics, and superior thermal stability. However,
文摘Two novel poly(aryl ether ketone)s based on (3 methyl)phenylhydroquinone were synthesized via aromatic nucleophilic substitution reaction. The high molecular polymers were easily obtained because of the high reaction activity of bisphenol monomer. The traces of DSC showed that the T gs of m TPEEK and m TPEEKK were 421 and 432 K, respectively. The two polymers exhibit a high thermal stability and good solubility. The transparent and flexible films were readily prepared with chloroform solution. The film of m TPEEK had a low dielectric constant( ε =2 7).